cosin scientific software

cosin scientific software AG

Hans-Stützle-Str. 20 81249 München GERMANY

info@cosin.eu www.cosin.eu

FTire/sim

Tire Stand-Alone Simulation
Documentation and User's Guide

Contents

1	FTi	re and QC Stand-Alone Simulation with FTire/sim	1
	1.1	Simulation Data	1
	1.2	Input Variables (Sources)	3
	1.3	Road Profiles and Obstacles	4
2	Qua	rter-Car (QC)	5
	2.1	Modeling Approach	5
	2.2	QC Parameters	5

General Remarks

This documentation provides details of the stand-alone simulation environment **FTire/sim**. For more material about **FTire** and other tire simulation tools, please visit www.cosin.eu.

1 FTire and QC Stand-Alone Simulation with FTire/sim

The simulation environment FTire/sim allows for easy-to-run simulations with FTire alone or with the combination FTire together with a detailed nonlinear quarter-car mode (QC). Like all cosin products, FTire/sim is available for Windows, Linux, and MacOS. FTire/sim uses up to 7 input-files, and 2 output-files. Apart from the plot-data file, all files are in cosin/io syntax. Of course, the input files can be merged to fewer files. In the end, just one input file can contain all data:

- the cfd-file, that allocates the logical files ISIM, ISRC, ISTR, IPAR, IPPAR, IQPAR, OPPAR, OPLOT (cf. *cosin/io* User's Guide),
- the simulation data file (file identifier ISIM), which defines basic simulation data (cf. section 3.1),
- the source data file (file identifier ISRC), which defines time histories of all external input variables ('sources'),
- the road data file (file identifier ISTR), which defines the road profile,
- the FTire basic parameter file (file identifier IPAR), which contains FTire basic parameters described in section 1.4,
- the FTire preprocessed parameter file (file identifier IPPAR), which keeps preprocessed FTire parameters. By using this file, if FTire basic data haven't changed from simulation run to simulation run, some CPU-time can be saved,
- the QC parameter file (file identifier IQPAR), which contains QC parameters described in section 2.2,
- the FTire preprocessed parameter file (file identifier OPPAR), which is calculated during pre- processing, for use in subsequent simulation runs,
- the plot data file (file identifier OPLOT), to be viewed in one of the plot-programs cosin/lean-plot (Windows version), cosin/ip (Unix version), or in Matlab or Excel.

Normally, file with identifiers ISIM, ISRC, ISTR, are merged to one simulation file.

1.1 Simulation Data

In the simulation file (identifier ISIM), *FTsim* looks for the data block \$simulation, and looks for the following data in this block:

Name in input file	Unit	Meaning
preprocessing	-	0 (default): try to read preprocessed
		data in IPPAR- file. If not successful,
		perform preprocessing
		1: always perform pre-processing,
		even if there are data available
simulation_mode	-	0 (default): only <i>FTsim</i> . Source data
		directly define hub-carrier position
		and velocity
		1: FTire + <i>QC</i> . Source data define
		car-body position and velocity
animation_mode	-	0 (default): no animation (<i>FTsim</i>
		runs fastest)
		1-9: animation with different viewing
		angles;
		101-109: same as 1-9, but preparing
		the generation of an avi movie file
		(attention, this feature temporarily
		takes a lot of disk space!)

Name in input file	Unit	Meaning
simulation	S	an array of three values:
		1: simulation starting time [s],
		normaly 0
		2: time step [s], normally something
		like 0.002 0.004
		3: simulation final time [s]
plot_output	s	an array of three values:
		1: starting time of plot output [s]
		2: time step of plot output [s]
		3: final time of plot output [s]
		If final time is less than start time,
		plot output is com- pletely suppressed
plot_output_start_time	S	starting time in plot annotation. This
		time may be defined independent on
		simulation starting time and plot
		output starting time. If not defined,
		plots will start at plot_output(1)
		or simulation(1), resp.
animation	S	an array of three values:
		1: starting time of animation [s]
		2: time step of animation [s]
		3: final time of animation [s]
		If final time is less than start time, or
		anima-tion mode = 0 , animation
		is completely suppressed
animation zoom	-	zoom-factor for animation. You also
		can zoom in and out during
		animation, by dragging rectangles
		with the mouse. Default value 1.0
plot_file_format	-	a character-string out of
*		standard dsp dspd matlab
		matrix excel gnuplot
		which defines the format of
		plot-output (cf. cosin/ip User's
		Guide)
frame	-	defines the frame to be used for plot
		output values of forces and torques:
		0 (default): TYDEX C
		1: TYDEX H
		2: TYDEX W
		3: ISO contact frame
		9: all frames
		10: TYDEX C. using kN and kNm
		11: TYDEX W, using kN and kNm
road_file	-	file to be scanned for cosin/ev road
		definition data. Default is the
		simulation file
obstacle	-	string to be used instead of the
		default road data- block name
		road type

1.2 Input Variables (Sources)

To define the external input variables, Sources&Sinks-routines of **cosin/io** are used, cf. *cosin/io* User's Guide, section 1.5). With these input variables, position and velocity of car-body or hub- carrier, resp. are defined, thus controlling directly or indirectly the movement of the rim. In the sources file (identifier ISRC), *FTsim* looks for the data block \$sources, and interprets this block to define the following sources:

Name in input file	Unit	Meaning
rolling_speed	m/s	<pre>vehicle speed (rolling_speed = 0 allowed)</pre>
tire_deflection	mm	controls height of hub-carrier or car-body, resp. Tire deflection exactly is prescribed by this input variable only if (a) road is even with height zero (b) simulation mode is FTire without <i>QC</i>
wheel_load	kN	approximately prescribes static wheel load. Overrides tire_deflection. On the basis of wheel_load, FTsim estimates a related value for tire deflection. At high rolling speeds, wheel load will be underestimated to a certain amount (if wheel_load_regulated = 0). In this case, the user should choose a somewhat smaller value and check the resulting actual wheel load in the plot-file. Similarly, for large camber an- gles, wheel load might be overestimated and should be corrected by choosing a greater value. Alterna- tively, by choosing wheel_load_regulated = 1, wheel load can be regulated to nearly exactly and automatically take the prescribed value
wheel_slip	%	<pre>prescribes longitudinal slip. Only in effect if free_spinning = 0 and wheel_revs is not de- fined. Positive for driving, negative for braking</pre>
wheel_revs	rad/s	<pre>wheel rotational speed. Overrides wheel_slip. Only in effect if free_spinning = 0</pre>

Name in input file	Unit	Meaning
side_slip_angle	deg	slip angle. Positive if steady-state
		side-force is positive, ie. lateral
		sliding velocity is negative. Only
		applicable if rolling_speed > 0 .
		Otherwise, use toe_in_angle to
		apply side-force
drive_torque	Nm	prescribes driving torque. Only
		applicable if free_spinning = 1 .
		May be positive or negative
brake_torque	Nm	prescribes braking torque. Only
		applicable if free_spinning = 1.
		Should be positive. Correct sign is
		opposed to that of wheel rotational
		speed and automatically observed in
		FTire
toe_in_angle	deg	toe-in-angle to prescribe slip angle on
		a test drum, when rolling_speed =
		0. Positive toe-in results in positive
		side-force. Rim toe-in angle exactly is
		prescribed by this input variable only
		If simulation mode is F I ire without
	dor	QC combor ongle. Desitive if positive
	ueg	rotation along x axis is applied to
		hub carrier (that is: combor angle
		normally is positive for left wheel and
		negative for right wheel in design
		nosition) Rim camber angle exactly
		is prescribed by this input variable
		only if si- mulation mode is FTire
		without QC
free_spinning	-	0: prescribe wheel rotation velocity
		1: prescribe driving and braking
		moments and integrate wheel
		rotation in FTire
wheel_load_regulated	-	0: tire deflection estimated from
		radial characteristic
		1: tire deflection chosen by
		wheel-load regulator
		Remark: wheel load can alternatively
		be regulated by using the cosin/ar
		PID controller function, described in
		the cosin/io documentation

1.3 Road Profiles and Obstacles

To specify road excitation, **FTire/sim** uses the package *cosin/road*. This package is described in a separate manual.

2 Quarter-Car (QC)

A simple 'Quarter-Car' (QC) model is used in **FTire/sim** as a test 'vehicle model' to aid in evaluating the performance of **FTire**.

2.1 Modeling Approach

QC comprises a model of the hub-carrier, with 3 degrees of freedom: longitudial, lateral, and verti- cal displacement with respect to the car-body. The car-body itself, by default, has no degree of freedom. Instead, its position and velocity is controlled through certain source variables, that is, through external inputs to the simulation model (cf.. section 3.4 and cosin/io User's Guide). Alter- natively, the vertical displacement of the car-body can be given a degree of freedom by specifying a positive 'sprung mass'.

The hub-carrier is coupled to the car-body by

- the condition 'no rotation relative to car-body',
- a nonlinear suspension spring that acts along a general direction vector, with a certain transmission ratio relative to wheel travel,
- a nonlinear shock-absorber that acts in the same direction as the suspension spring, but with a different transmission ratio. The shock-absorber carries a nonlinear elastic bearing, inner fric- tion, and a constant gas force,
- a linear longitudinal spring/damper combination, as well as a linear lateral spring/damper combination. Both work along a general direction vector,
- up to 5 friction elements. Every element consists of a linear spring/damper element which is itself in line with a dry friction element. The dry friction element is defined through two values, one for static friction force, and one for sliding friction force. Every friction element works along an individual direction vector. Transmission ratio for the friction element is defined to be 1.0.

Name in input file	Unit	Meaning
sprung_mass	kg	portion of car-body mass that is
		supported by the wheel. If
		sprung_mass is not specified or set
		to a value less or equal to zero, no
		degree of freedom is assigned to the
		car-body
unsprung_mass	kg	mass of hub-carrier, including
		suspension parts, rim, brake, etc., but
		excluding tire belt mass (cf. FTire
		basic parameters)
transmission_ratio_suspension_s	pring	spring deflection / wheel travel
transmission_ratio_shock_absorb	er	shock-absorber deflection / wheel
		travel
shock_absorber_gas_force	N	constant gas force of shock-absorber,
		tends to push hub-carrier down

2.2 QC Parameters

Name in input file	Unit	Meaning
suspension_direction_vector	-	vector with three components in
		hub-carrier-fixed frame, indicating
		the direction of the suspension spring
		and shock-absorber force Remarks:
		1. direction vector needn't be
		normalized: this is done
		automatically by QC
		2 point of attack is not relevant
		because moments do not affect
		hub-carrier (no ro- tation)
long_stiffn_hubcarrier	N/mm	linear stiffness between car-body and
	1	hub-carrier, essentially in longitudinal
		direction
long_damping_hubcarrier	Ns/mm	linear damping between car-body and
	/	hub-carrier. essentially in longitudinal
		direction
long stiffn direction vector	-	vector with three components in
		hub-carrier-fixed frame, indicating
		the exact direction of the longitudi-
		nal stiffness and damping
lat stiffn hubcarrier	N/mm	linear stiffness between car-body and
		hub-carrier essentially in lateral
		direction
lat damping hubcarrier	Ns/mm	linear damping between car-body and
<u>-</u>		hub-carrier, essentially in lateral
		direction
lat_stiffn_direction_vector	-	vector with three components in
		hub-carrier-fixed frame, indicating
		the exact direction of the lateral
		stiffness and damping
number_of_friction_elements	-	number of friction elements (between
		0 and 5)
friction_element_i (i=1,5)	div	data of friction elements.
		friction_element_i consists of 7
		components, that may all reside in
		one or, equally well, in several
		consecutive lines of the input-file (cf.
		cosin/io User's Guide):
		1: stiffness [N/mm]
		2: damping [Ns/m]
		3: static friction force [N]
		4: sliding friction force [N]
		5-7: direction vector [-]
\$suspension spring	mm. N	spline data block for suspension
	, -	spring characteristic. Contains data
		pairs in ([mm], [N]) for spring
		deflection and spring force Pre-load
		is contained in the charac- teristic
<pre>\$suspension_spring</pre>	mm, N	3: static friction force [N] 4: sliding friction force [N] 5-7: direction vector [-] spline data block for suspension spring characteristic. Contains data pairs in ([mm], [N]) for spring deflection and spring force. Pre-load is contained in the characteristic

Name in input file	Unit	Meaning
<pre>\$shock_absorber</pre>	m/s, N	spline data block for shock-absorber
		characteristic. Contains data pairs in
		([m/s], [N]) for shock-absorber
		deflection velocity and
		shock-absorber force. Coulomb
		friction is contained in the
		characteristic
<pre>\$shock_absorber_bearing</pre>	mm, N	spline data block for shock-absorber
		bearing charac- teristic. Contains
		data pairs in ([mm], [N]) for bearing
		deflection and bearing force. Pre-load
		is contained in the characteristic