cosin scientific software

cosin scientific software AG

Hans-Stützle-Str. 20 81249 München GERMANY

info@cosin.eu www.cosin.eu

FTire Parameterization

Proposed Measurement and Data Processing Procedures for Use with FTire/fit

1 Preface

Parameterization of **FTire**, as for all comparable physically based tire models, is not easy and clearly needs some experience.

On the other hand, **FTire** is able to pre-process different kinds of data in a very flexible and user-friendly way. By this, the parameterization process can be adapted, to the kind of measurements that are available, or that can be acquired at an affordable costs.

Three cosin tools are available to assist with parameterization:

- *FTire/fit* identifies most of **FTire's** parameters on basis of static and steady-state measurements, as well as dynamic cleat tests and tire footprints. The measurements that are proposed in the next chapter are meant to be processed by **FTire/fit**;
- *FTire/calc* calculates most of the tire structural parameters used by **FTire**, on basis of tire design data that is typically used for an FE model. **FTire/calc** is understood to be an **FTire/fit** extension, and available from within **FTire/fit**;
- *FTire/estim* estimates **FTire** parameters by comparing its dimension with a similar, well known reference tire, and applying customizable arithmetic estimation formulae. **FTire/estim** is contained in both **FTire/fit** and **cosin/tools**.

For more information on how to get and apply these tools, please contact info@cosin.eu, or visit cosin.eu.

2 Standardized Measurement Procedure

This proposal is primarily meant for passenger car tires. For other types of tires, the measuring conditions have to be adapted accordingly.

The standardized TYDEX file format is strongly recommended for measurement ids 8 and 11..24. All measurement files should contain a time channel, camber angle, slip angle, wheel slip, rolling speed (drum or flat-track surface velocity if applicable), and all force and moment components in one of the TYDEX coordinate systems. We recommend the TYDEX C system. The files should strictly adhere to the standardized TYDEX format. If applicable, the signals can be specified by constants rather than measurement channels.

Data resulting from the procedure should be processed with the aid of **FTire/fit**. Measurement ids 8 and 10..24 are to be repeated for two different inflation pressure values, if a variation of inflation pressure is intended during the model application.

All proposed measurements are designed to be potentially replaced by simulation results from an advanced FE model, compare next chapter.

The term 'LI load' refers to the maximum admissible vertical load of the tire as specified in the respective ETRTO table, at medium inflation pressure (which is 2.5 bar = 36 psi for passenger car tires).

Data / Measurement Term	Description	Measurement Procedure	Result Data / additional
, example(s) of respective file			.tdx channels
name or data item			
1 DIMENSION	tire and rim dimension		string
205/55R16 91V 6.5J	(ECE-R 30 and ETRTO),		
	including load index, speed		
	symbol, and rim width		
2 MANUFACTURER	manufacturer and brand		string
Continental SportContact 6			
3 PRESSURE	inflation pressure(s)		single value(s)
2.4 bar	(nominal (first) and if		
	intended max. possible)		
	applied during		
	measurements		
4 MASS	tire mass without rim		single value [kg]
9.6 kg			
5 OUTER_CONTOUR	tire's cross section outer contour in inflated but		x/y data pairs (distance less
			than 10 mm) or drawing to
	unloaded condition, for first inflation pressure		be digitized
6 TREAD DEPTH	local tread depth vs. lateral		x/y data pairs (distance less
O TREAD_DEFTH	belt co-ordinate		than 10 mm) or drawing to
	beit co-ordinate		be digitized, as well as the
			tread base height
7 RMAX	maximum radius	measure circumference (and	.tdx-file with channels
rmax.tdx		divide by 2*pi for radius or	INFLPRES (inflation
		by pi for diameter) of the	pressure) and OVALLDIA
		tire at the following	(overall diameter)
		percentages of the nominal	
		(first) inflation pressure: 0,	
		25, 50, 75, 100, 125, 150 %	
8 RDYN	dynamic rolling	wheel free rolling on/in	.tdx-file. Extra channels:
rdyn_2p4_3fz0.tdx	radius/circumference,	drum or flat-track at half LI	drum or flat-trac surface
	rolling resistance,	load with $v = 3 \text{ km/h}$ (or	speed, wheel angular speed
	ply-steer/conicity	less) 100 km/h (slowly	
		accelerated), zero camber,	
		wheel neither driven nor	
A 911075 A		braked	
9 SHORE_A		standard Shore test	· · ·
			[IVIPa]
	· · ·		
		gravescale footprint at half	1 hitman files
			T Ditiliap Illes.
-ν2ντ_ουσιπ.υπμ		· ·	
		_	
11 CVERT	vertical stiffness on flat		.tdx-file
cvert 2p4.tdx	surface		
cvert bottoming 2p4.tdx		surface. Find first contact	
	1		1
cvert_2p4.tdx		standard Shore test gray-scale footprint at: half LI load, zero camber LI load, zero camber, half LI load, 6 deg camber, LI load, 6 deg camber release brake. Slowly move tire downward against a flat surface. Find first contact	single value; [Shore A] or [MPa] 4 bitmap files. .tdx-file

Data / Measurement Term	Description	Measurement Procedure	Result Data / additional
example(s) of respective file	2 cost priori		.tdx channels
name or data item			
12 CVERT CLEAT	vertical stiffness on a	release brake. Slowly move	.tdx-file
 cvert_cleat_2p4.tdx	transversal cleat.	tire downward against the	
		cleat. Find first contact =	
		zero deflection	
13 CVERT OBLI CLEAT	vertical stiffness on an	release brake. Slowly move	.tdx-file
 cvert cleat b 2p4.tdx	oblique cleat (45°)	tire downward against the	
		cleat. Find first contact =	
		zero deflection	
14 CVERT LONG CLEAT	vertical stiffness on a	release brake. Slowly move	.tdx-file
cvert_cleat_2p4.tdx	longitudinal cleat	tire downward against the	
	G	cleat. Find first contact =	
		zero deflection	
15 CVERT CAMBER	vertical stiffness on flat	release brake. Slowly move	.tdx-file
cvert 2p4 p6cam.tdx	surface 6 deg camber angle	cambered tire downward	
		(z-axis in TYDEX W)	
		against a flat surface. Find	
		first contact = $zero$	
		deflection	
16	vertical stiffness on a	release brake. Slowly move	.tdx-file
CVERT CLEAT CAMBER	transversal cleat. 6 deg	cambered tire downward	
cvert cleat 2p4 p6cam.tdx	camber angle	against the cleat. Find first	
		contact = zero deflection	
17 CLAT	lateral stiffness on flat	release brake. Release brake.	.tdx-file, including time
clat 2p4 2fz5.tdx	surface	Slowly move tire downward	channel and additional
	Surface	against a flat surface until	channel: lateral tire
		it reaches half LI load.	displacement
		Slowly move tire in lateral	displacement
		direction (at least twice the	
		vertical displacement)	
18 CLONG	longitudinal stiffness on flat	release brake. Slowly move	.tdx-file. additional channel:
	surface	tire downward against a flat	longitudinal displacement
clong_2p4_2fz5.tdx	Surface	surface until it reaches half	longitudinai displacement
		LI load deflection. Lock	
		brake. Slowly move tire	
		forward (at least twice the	
		vertical displacement)	
19 CTORS	torsional stiffness on flat	release brake. Slowly move	.tdx-file
ctors 2p4 5fz0.tdx	surface	tire downward against a flat	
ctors_2p4_5120.tdx	Surface	surface until it reaches half	
		LI load. Slowly turn tire at	
		5	
		least 6 deg about vertical	
		axis in contact patch center, at a constant rate of about	
		1 deg/s. Wait for about 1 s	
		at maximum turning angle.	
		Turn back at about -1	
		deg/s to respective negative	
		amplitude. Wait about 1 s.	
	· · · · · · · · · · · · · · · · · · ·	Turn back to 0 angle	2 total files
20 CVERT_DYN	vertical stiffness on/in	for standing (brakes	3 .tdx-files
cvert_dyn_idr_2p4.tdx	drum, at 0, 50, 100 km/h	released) or free rolling tire	
cvert_dyn_idr_2p4_50v.tdx	drum speed	on/in drum, apply	
		sinusoidal tire deflection	
		(1Hz, 030 mm, 5 cycles)	

Data / Measurement Term	Description	Measurement Procedure	Result Data / additional
example(s) of respective file			.tdx channels
name or data item			
21 TRACTION	longitudinal force	for free rolling tire on/in	2 .tdx-files
muslip_2p4_5fz0_60v.tdx	characteristic	drum (v = 50 km/h),	
		increase brake torque until	
		wheel is completely locked	
		(1-2sec). Camber angle 0	
		deg, 50% and 100% LI load	
22 HANDLING	side force characteristics	for free rolling tire on/in	4 .tdx-files
side_2p4_5fz0_60v.tdx		drum (v = 50 km/h),	
		slowly sweep slip angle	
		between +/-12 deg.	
		Camber angle 0 and 6 deg,	
		50% and 100% LI load	
23 CLEAT	rolling on/in drum over a	for free rolling tire on/in	6 .tdx-files
cleat_a_3fz0_30v_2p4.tdx	transversal cleat, at 30, 60,	drum, run over cleat, at	
cleat_a_6cam_3fz0_30v_2p4	90 (if possible) km/h drum	half and full LI wheel load.	
.td×	speed	Make sure at least 10 ms	
		are recorded from start of	
		measurement to fist cleat	
		contact	
24 CLEAT_OBLIQUE	rolling on/in drum over a	for free rolling tire on/in	6 .tdx-files
cleat_b_3fz0_30v_2p4.tdx	45 deg obliquely oriented	drum, run over cleat, at	
	cleat, at 30, 60, 90 (if	half and full LI wheel load.	
	possible) km/h drum speed.	Make sure at least 10 ms	
		are recorded from start of	
		measurement to fist cleat	
		contact	

These measurements have to reflect the physical behavior of the tire and are used to identify parameters of the physical tire model **FTire**. For all tests where friction takes place: Identical ground surfaces (friction behavior) should be provided. If not, differences have to be reported and taken into account.

Tests on a drum can be done on a flat-trac as well. The drum curvature (0 in case of flat-trac) has to be included in the .tdx file.

Please note: even if only single measurements differ too much from the physical tire behavior (because of mis-calibration or unknown test rig compliance, say), it might be impossible to get a consistent set of physical parameters. Obviously, in case of large differences between measurement and true physical properties (such as tire mass, say), the identification process might not come to a satisfying end.

3 Modified Measurement Procedure Combined with FE Analyses

If a validated FE model of the tire is available, some or all measurements can be replaced or completed by certain FE load case results. Depending on the capabilities of the FE model, a wide range of procedures can be thought of, beginning by merely replacing some of the statics measurements, and ending with a fully FE-based parameterization, completely omitting all test-rig measurements.

In this documentation, as an example, a procedure is described which combines FE geometry, FE modal analysis, and static FE load cases (providing more detailed results than respective measurements on a test-rig typically do) with rolling dynamics measurements on test-rigs.

3.1 FE Analyses

Compute and provide results of several analyses according to the following specification:

3.1.1 Surface Geometry of Inflated but Unloaded Tire

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name			
31 GEOM_FE	location of sufficiently	zero load, zero camber	.fer-files as specified below
geom_fe_2p4_2td0.fer	many and	angle, zero toe angle, both	
	well-distributed nodes	with (a) original and (b)	
	on the tire surface,	reduced tread depth as set	
	covering both tread and	in load cases below, at	
	sidewalls, as used in	inflation pressure(s) as	
	load cases described	specified in 3	
	below. This analysis		
	type replaces type 5		
	(OUTER_CONTOUR)		

Geometry result file: ASCII file (detailed file format is specified below), containing

- rim center global coordinates x,y,z [m]
- inflation pressure [bar]
- tread depth [mm]
- one line for every node, containing global coordinates of nodes in inflated but unloaded tire state: x,y,z [m].

3.1.2 Eigenfrequencies and Mode Shapes of Unloaded and Loaded Tire

Perform modal analysis of unloaded and loaded tire with zero damping, in case of loaded tire on flat surface:

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name			
32 MODE_FE	mode shape amplitudes	vertical displacement 20%	.fer-files as specified below
mode_fe_84Hz6_2p4_2td.fer	(spatial displacements)	sidewall height; zero	
	of nodes as specified in	camber angle; tread depth	
	31	2 mm or less; inflation	
		pressure(s) as specified in 3	

Modal result file: one ASCII file per eigenfrequency (covering at least the first 6 ones, both in unloaded and loaded condition; detailed file format is specified below), containing

- rim center global coordinates x,y,z [m]
- Fz [N]
- tread depth [mm]
- eigenfrequency [Hz]
- one line for every node, containing global coordinates of nodes in undeformed tire state and displacement of the nodes in the mode's deformed tire state: x0,y0,z0,dx,dy,dz [m].

3.1.3 Surface Distortion under Static Load on Different Surface Geometries

Solve statics load cases:

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name			

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name			
33 CVERT_FE cvert_fe_20defl_2p4_2td0.fer	tire surface distortion and wheel load at medium and high vertical load on flat surface at zero camber angle	tread depth 2 mm or less; camber angle 0 deg; wheel center above flat surface such that tire deflection is 20% and 40% of sidewall height; road contact by unilateral contact elements between tread nodes and road surface; road surface	.fer-file as specified below
	the conferentiation	friction coefficient set to 0; inflation pressure(s) as specified in 3	for file of one if a labor
34 CVERT_CLEAT_FE cvert_fe_20defl_2p4_2td0.fer	tire surface distortion and wheel load at medium and high vertical load on transversal cleat at zero camber angle	tread depth 2 mm or less; camber angle 0 deg; wheel center above transversal cleat (height 20mm) such that tire deflection is 20% and 40% of sidewall height; road contact by unilateral contact elements between tread nodes and cleat/road surface; cleat/road surface friction coefficient set to 0; inflation pressure(s) as specified in 3	.fer-file as specified below
35 CVERT_LONG_CLEAT_FE cvert_fe_20defl_2p4_2td0.fer	tire surface distortion and wheel load at medium and high vertical load on longitudinal cleat at zero camber angle	tread depth 2 mm or less; camber angle 0 deg; wheel center above longitudinal cleat (height 20mm) such that tire deflection is 20% and 40% of sidewall height; road contact by unilateral contact elements between tread nodes and cleat/road surface; cleat/road surface friction coefficient set to 0; inflation pressure(s) as specified in 3	.fer-file as specified below
36 CVERT_CAMBER_FE cvert_fe_20defl_6cam0_2p4_2td0.f	tire surface distortion erand wheel load at medium and high vertical load on flat surface at 6 deg camber angle	tread depth 2 mm or less; camber angle 6 deg; wheel center above flat surface such that tire deflection is 20% and 40% of sidewall height; road contact by unilateral contact elements between tread nodes and road surface; road surface friction coefficient set to 0; inflation pressure(s) as specified in 3	.fer-file as specified below

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name	tire surface distortion	twood double 2 mans on loops	for file on energified helper
37 CVERT_CLEAT_CAMBER_FE	and wheel load at	tread depth 2 mm or less; camber angle 6 deg; wheel	.fer-file as specified below
cvert_fe_20defl_6cam0_2p4_2td0.fer	medium and high	center above transversal	
	vertical load on	cleat (height 20mm) such	
	transversal cleat at 6	that tire deflection is 20%	
	deg camber angle	and 40% of sidewall height;	
	deg calliber aligie	road contact by unilateral	
		contact elements between	
		tread nodes and cleat/road	
		surface; cleat/road surface	
		friction coefficient set to 0;	
		inflation pressure(s) as	
		specified in 3	
38 CLAT FE	tire surface distortion at	tread depth 2 mm or less;	.fer-file as specified below
clat fe 40defl 2p4 2td0.fer	lateral displacement,	camber angle 0 deg; wheel	.iei-iiie as specified below
	high vertical load, and	center above flat surface	
	zero camber angle	such that tire deflection is	
	zero camber angle	20% and 40% of sidewall height.	
		First, compute statics w/o	
		any horizontal displacement,	
		using unilateral contact	
		elements between tread	
		nodes and road surface.	
		Then, fix nodes that have	
		road contact by respective	
		boundary conditions, and	
		move tire by 20%/40% of	
		sidewall height in lateral	
		direction; inflation	
		pressure(s) as specified in 3	
39 CLONG FE	tire surface distortion at	tread depth 2 mm or less;	.fer-file as specified below
clong_fe_40defl_2p4_2td0.fer	longitudinal	camber angle 0 deg; wheel	
	displacement, high	center above flat surface	
	vertical load, and zero	such that tire deflection is 20% and 40% of sidewall	
	camber angle	height.	
		First, compute statics w/o	
		any horizontal displacement,	
		using unilateral contact	
		elements between tread	
		nodes and road surface.	
		Then, fix nodes that have	
		road contact by respective	
		boundary conditions, and	
		move tire by 20%/40% of	
		sidewall height in	
		longitudinal direction;	
		inflation pressure(s) as	
		specified in 3	

Data Term	Description	Load Case Details	Result Data
example(s) of respective file name			
40 CTORS_FE ctors_fe_40defl_2p4_2td0.fer	tire surface distortion at torsional displacement, high vertical load, and zero camber angle	tread depth 2 mm or less; camber angle 0 deg; wheel center above flat surface such that tire deflection is 20% and 40% of sidewall height. First, compute statics w/o any horizontal displacement, using unilateral contact elements between tread nodes and road surface. Then, fix nodes that have road contact by respective boundary conditions, and rotate tire 6 deg counter-clockwise about	.fer-file as specified below
		vertical axis; inflation pressure(s) as specified in 3	

Statics result file: one ASCII file per load case (detailed file format is specified below), containing

- rim center coordinates x,y,z [m]
- spindle forces/moments Fx, Fy, Fz [N], Mx, My, Mz [Nm]
- camber angle [deg]
- toe angle [deg]
- tread depth [mm]
- cleat height [mm]
- cleat width [mm]
- cleat orientation [deg]; 0 deg = transversal
- one line for every node, containing global coordinates of nodes in undeformed tire state and displacement of the nodes in deformed tire state: x0,y0,z0,dx,dy,dz [m]
- one line for every node in contact with road, containing global coordinates of nodes in deformed tire state together with contact forces, expressed in global coordinates: x,y,z,Fx,Fy,Fz [m], [N].

3.2 Dynamics Measurements

Provide data/measurements 1 to 10 and 20 to 24 as specified in above table. Obviously and if feasible, test-rig measurements can always be replaced by respective FE simulations.

3.3 FER Files

FE result files (fer files) serve for result exchange between FE analyses and FTire/fit. The format used is designed both for easy creation and easy interpretation, and is open to future expansions. Intentionally, no 'rich' file format like xml was chosen, to keep the files as simple as possible, and avoid the necessity of special software to browse its content.

Any blank line or line beginning with an asterisk (*) is treated as comment line and neglected.

The first non-comment line holds one of the keywords \$geometry, \$mode, or \$load_case. Subsequent noncomment lines contain, in arbitrary sequence, **variable specifications**. Every variable specification consists of a keyword (see list below), followed by one ore more numerical values, and an optional in-line comment, separated by an exclamation mark (!) from the numerical value(s). Keyword, values, and optional exclamation mark are separated from each other by at least one blank space or tab.

After specification of all variables, the next line consists of the keyword \$results. After this keyword, one or more of the keywords as listed below may follow, each in a separate line:

- in case of type \$geometry
 - nodes (or nodes_surface)
 - nodes_belt
 - nodes_carcass
 - nodes_innerliner
- in case of type \$mode
 - nodes_displacements (or nodes_displacements_surface)
 - nodes_displacements_belt
 - nodes_displacements_carcass
 - nodes_displacements_innerliner
- in case of type \$load_case
 - forces_moments
 - nodes_displacements (or nodes_displacements_surface)
 - nodes_displacements_belt
 - nodes_displacements_carcass
 - nodes_displacements_innerliner
 - contact_forces

After every such keyword, some lines follow, each containing a certain number of numerical values. The number and meaning of these values (nodal coordinates, hub forces, contact forces etc.) is described below.

The variable values in the **first** data-block specify operating and boundary conditions of the respective analysis. All mandatory values for the different analysis types, together with important non-mandatory values, are listed here:

Variable	Description	Unit	Mandatory for Surface Geome- try	Mandatory for Modal Analysis	Mandatory for Static Load case
rim_center_position	x/y/z position of rim center in global coordinates	3 × [mm]	*	*	*
rim_orientation	rim orientation angles (camber angle, rotation angle about spin axis, toe angle)	3 × [deg]	*	*	*
radial_deflection	difference between wheel center height at first road contact and actual wheel center height	[mm]		*	*
inflation_pressure	inflation pressure	[bar]	*	*	*
tread_depth	tread depth at tire zenith	[mm]	*	*	*
cleat_height	cleat height	[mm]			*
cleat_width	cleat width	[mm]			*
cleat_angle	cleat orientation angle (0 deg for transversal cleat, 90 deg for longitudinal cleat)	[deg]			*
layer	layer nodes of which have to be used: 0 neutral belt/carcass line 1 outer surface (default) 2 inner surface	_			
sticky_surface	0 low-friction surface (do not allow horizontal shear stress in tread, default) 1 high-friction surface (allow horizontal shear stress in tread)	-			

For the second and following data blocks, meaning of the data is as described below.

Every line under one of the keywords

• nodes

- nodes_surface
- nodes_belt
- nodes_carcass
- nodes_innerliner

holds 3 numerical values, describing the location of a node on the respective layer of the unloaded tire in rim-fixed coordinates, in [mm]. Keywords nodes and nodes_surface are equivalent; both indicate nodes of the undistorted tire surface.

Every line under the keyword

- nodes_displacements
- nodes_displacements_belt
- nodes_displacements_carcass
- nodes_displacements_innerliner

holds **6** numerical values. The first 3 values describe the location of a node on the respective layer on the undistorted tire surface in rim-fixed coordinates, in [mm]. The next 3 values hold the spatial displacement of this node under loading conditions as described with values above, described in rim-fixed coordinates. Keywords nodes_displacements and nodes_displacements_surface are equivalent; both indicate nodes of the undistorted tire surface.

The (single) line under the keyword

• forces_moments

holds 6 numerical values. The first 3 values describe the tire-induced forces on the wheel hub in global coordinates, in [N], whereas the remaining 3 values are the moments on the wheel hub in global coordinates, in [Nm].

Every line under the keyword

• contact_forces

holds 6 numerical values. The first 3 values describe the point of attack, located in the footprint, of a single contact force. These points of attack are given in global coordinates, in [mm]. The next 3 values hold the respective spatial contact force, described in global coordinates, in [N]. Note that respective 'point-wise' contact moments currently are neither provided nor used. This is in contrast to the **global** contact moment, created by all contact forces together with their lever arms relative to the contact patch center.

This is an example of a fer file:

* Demo Tire 22	25/45 R 17 91	V 7J			
<pre>\$load_case rim_center_pd rim_orientat: radial_defled inflation_pro tread_depth</pre>	ion 0. ction 26. essure 2.			.424955	! 3x[mm] ! 3x[deg] ! [mm] ! [bar] ! [mm]
<pre>\$results forces_moment -0.000000</pre>		4824.871413	0.000254	0.024426	-0.004835
-215.170518	cements -82.550000 -90.004420 -101.437930 -80.670195 -26.889964 26.890265 80.670490	228.691988 210.750361 200.106690 187.407784 185.355971 185.355965 187.407767	0.459279 2.456547 -3.668724 -5.226958 -5.227012	0.640362 1.181784 0.000148 0.000150 0.000150	0.000000 0.875439 4.802058 5.620496 5.185911 5.185905 5.620479

4 Additional Remarks

4.1 Result Data

In case of measuring forces/torques (11 ... 24), always include at least the following channels in the TYDEX file:

- time
- Fx, Fy, Fz (TYDEX C, H, or W axis system)
- Mx, My, Mz (TYDEX C, H, or W axis system)
- deflection (zero=first contact to ground or cleat)
- distance ground wheel centre
- long slip
- slip angle
- camber angle
- velocity
- wheel rotation speed
- temperature
- tread depth

A measurement duration of 2..15sec (depending on test) should be sufficient for all steady state tests.

4.2 Filter

Use low-pass filtering adequate to kind of test (200-300Hz for cleat tests). Do not use filter orders higher than 2. High order filters might generate harmonic distortions.

4.3 Measurements 5 and 6

(refer also to ftire model.pdf)

- outer contour: grooves and ribs need not to be resolved. Measure in inflated (nominal pressure) and unloaded condition
- local tread depth is understood to be local radial distance between (1) outermost belt layer surface + tread base height and (2) tire outer surface
- alternatively, a detailed cross-section drawing in inflated but unloaded condition can be used, which includes belt and carcass layers
- x/y data pairs should have distance not larger than about 10mm
- measuring the left side is sufficient in case of a symmetric tire
- example ASCII file for outer contour:

```
89.0 310.0 ! start at left tread border (tread_width/2), or more outside
80.0 316.0
.. ..
20.0 319.40
10.0 319.60
0.0 319.65 ! tyre center
```

• example ASCII file for tread_depth:

first row - axial distance (tire mid plane=0.0), second row - local tread depth

 95.0
 5.0

 87.0
 5.5

 84.2
 7.1

 75.0
 8.0

 ..
 ..

 20.0
 8.1

 10.0
 8.2

 0.0
 8.2

4.4 Measurement 10

Set of images of the the tire contact patch at various loads. All images must use a file format that supports uncompressed (eg. BMP) or a lossless image compression (eg. PNG, TIFF). Images stored using a lossy com-

pression method (eg JPEG) will result in inaccurate results, and is thus not recommended. Measurements can be supplied as contact patch images (binary black/white images), and/or colored footprint pressure distribution images.

Contact patch (default):

- binary black/white images (or grey scale images)
- black pixels must represent actual contact with the road surface
- image files must contain a horizontal, or vertical, **red** calibration line on the outside of the footprint of known length (preferably 100 mm)
- preferable, the tire mid plane should be perpendicular to the red calibration line
- please include sufficiently large margins around footprint (at least 2 cm). The area outside the main footprint should be white; avoid single dark or black pixels

Alternatively colored footprint pressure distribution images can be used:

- colored images (or grey scale images) of the the tire contact patch pressure distribution at various loads
- colored pixels must represent local tire contact pressure with the road surface
- image files must contain a horizontal, or vertical, **black** calibration line on the outside of the footprint of known length (preferably 100 mm)
- preferable, the tire mid plane should be perpendicular to the **black** calibration line
- images must contain a color(or grey scale) color palette that corresponds to the tire contact pressure
- the four corners of the color pallet must be marked with a single black pixel(one on each corner), to enable automatic processing of the image
- the minimum and maximum values of the color pallet needs to be supplied during check-in, please see Proposed Specification of Filenames section for more information. These values will be used to interpolate the color palette
- no black pixels other than the black calibration line and the four pixels marking the color palette, are allowed in the image
- please include sufficiently large margins around footprint (at least 2 cm). The area outside the main footprint should be white; avoid single colored pixels

4.5 Measurements 11 ... 16

- let graphs start at origin (Fz=0/deflection=0). A vertical force of about 150% LI should be reached. For identifying tire-rim contact (bottoming), load can be extended beyond this point. Please take care about the maximum rim load. The vertical movement of the tire is defined along the z-axis of the W-axis system (refer to TYDEX axis systems)
- the cleat height is comparable in size to tire deflection at half LI load. If used, the type of cleat should be defined in the TYDEX file. Make sure the wheel center is placed right above the cleat center-line

4.6 Measurements 17 ... 19

begin measurement with loaded tire, zero longitudinal deflection / lateral deflection / slip angle, and zero Fx/Fy/Mz. Just pull the tire once after vertical loading, and use this sample; the following samples would start with a pre-stress in the contact patch and falsify the result. Full sliding of the contact patch should be reached. This can be recognized if Fx/Fy/Mz does not increase anymore

4.7 Measurements 21 ... 24

- obviously, you might measure more combinations of wheel load, drum speed, camber angle etc. than specified above; but these combinations should cover the tire model's operating conditions of interest
- to keep the tire temperature and wear as low as possible, the measurement duration should be kept short. 1..2sec for traction and 10..15sec for handling is sufficient

4.8 Measurements 23 and 24

• cleat width: 20-30mm for passenger tires

- cleat height should be at least in the range of tire deflection at half rated load (whereas there is no need to use exactly this height). 10..15mm are adequate for most passenger tires
- a cleat definition file should be provided. An example (demo_cleat.clt) can be found in the private data folder which is create during installation of the cosin software
- use a sampling rate 1kHz or higher, to resolve frequencies up to at least 250Hz
- the type of cleat (A, B, ...) should be logged in the TYDEX file, using the undocumented parameter label OBSTTYPE
- since it might make a considerable difference which part of the tire has the first cleat contact (groove or block), averaging 5-10 cleat tests (with equal measurement conditions) will improve the comparability

4.9 Proposed Specification of Filenames

In order to facilitate recognition and check-in of measurements, and to reduce risk of mis-interpretation of file content, it is advised to choose the measurement file names according to the following scheme (see the FTire/fit demo project for examples):

file name begins with	file content	file type
clat_	lateral stiffness test	tdx
cleat_x_	dynamic cleat test on cleat X (X =	tdx
	A,B,C,)	
clong_	longitudinal stiffness test	tdx
ctors_	torsional stiffness test	tdx
cvert_	static vertical stiffness test	tdx
cvert_dyn_	dynamic vertical stiffness test	tdx
fp_	footprint	png or bmp
muslip_	traction test	tdx
rdyn_	dynamic rolling radius test	tdx
rmax_	maximum radius test	tdx
side_	handling test	tdx
geom_fe	FE-based surface geometry	fer
mode_fe	FE-based modal analysis	fer
cvert_fe	FE-based vertical statics	fer
clat_fe	FE-based lateral statics	fer
clong_fe	FE-based longitudinal statics	fer
ctors_fe	FE-based torsional statics	fer

• specification of file name prefix and extension

• specification of optional file name components after prefix (separated by an underscore):

file name	measurement detail
contains(numerical values	
serve as example)	
2p4	inflation pressure $= 2.4$ bar
2fz5	vertical-force = 2.5 kN
30v	velocity = 30kmh
6cam	camber = +6deg
m6cam	camber = -6deg
cleat	transversal, longitudinal, or oblique cleat
1pmax0	max. ground pressure $= 1$ MPa
Opmin1	min. ground pressure $= 0.1$ MPa