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1 Modelization 
 

Being a typical representative of detailed mechanical tire models ‘below’ true FEM models, the author’s 

model family FTire (Flexible Ring Tire Model) will be discussed in greater detail here. FTire development 

started in 1998, using certain ideas and numerical concepts of the author’s ‘coarse-mesh’ FE model DNS-

Tire ([1], [2], [4]) and the spatial non-linear ‘rigid-ring’ model BRIT ([3], [5], [6]). This first version of FTire has 

been essentially improved since then. It is one of the advanced tire models of MSC.ADAMS™, and is as well 

implemented into several ‘in-house’ simulation programs at different companies, and as a sub-system block 

in MATLAB/SIMULINK™. Recently, FTire has been completed by a new rigid-ring model (called RTire), and 

a redesign of DNS-Tire (called FETire). RTire, FTire, and FETire together set up the FTire Model Family. 

FTire and FETire are discussed below. 

 

1.1 FTire: Flexible Ring Tire Model 
 

FTire is the most important member of the FTire model family. Like most other mechanical tire models, the 

kernel of FTire consists of two separate parts. The first part is describing the tire’s structural stiffness, damp-

ing, and inertia properties (the structure model, for short). The second one is the tread/road contact model, 

comprising road evaluation, and computation of contact pressure distribution and distributed friction forces 

(the tread model, for short). 

 

Underlying idea of the structure model is to introduce only as few degrees of freedom as necessary, to rep-

resent all tire properties that are relevant for the application. Main objectives during development had been: 

• fully non-linear 3D model, working in time domain; 

• valid up to 150 Hz both in-plane and out-of-plane; 

• longitudinal wave lengths ≤ 5 cm, including sharp-edged obstacles; 

• lateral wave-lengths ≤ 15 cm; 

• parameterization as easy and flexible as possible; 

• usage of ‘easy-to-measure’ static, steady-state, and modal properties in parameterization; 

• computing time ≤ 5 .. 20 times real time; 

• valid for ride and handling, both in steady-state and dynamic conditions; 

• simple and flexible interfacing to vehicle and road models. 

 

Potential applications of FTire comprise of 



• tire models for passenger cars, motor-cycles, race cars, trucks, trailers, ATVs, aircrafts, earth-moving 

machines, etc.; 

• all vibrations up to about 150 Hz, induced by tire/road contact; 

• vibration excitation through tire imperfections; 

• generation of load histories for durability simulations; 

• traction and handling on extremely uneven roads; 

• rolling resistance studies on even and uneven road; 

• tire misuse; 

• steering torque amount when parking;  

• assessment of highly dynamic suspension control systems; 

• moving ground, all kinds of test-bench simulations; 

• tire temperature and its influence on road friction; 

• tread wear; and 

• sudden pressure loss. 

 

Most model extensions, like thermal and wear model, tire misuse, and tire imperfections have been stimu-

lated by users in vehicle and tire industry. Of course, there are still many effects which are of relevance in 

suspension design and optimization, but cannot be analyzed using FTire, like noise generation, traction on 

soft soil or snow, hydroplaning, and more.  
 

1.1.1 Structure Model 
 

The FTire structure model consists of 80 to 200 lumped-mass nodes, replacing the tire’s steel cord. These 

nodes are connected to the rim and to each other by several non-linear, inflation pressure dependent stiff-

ness, damping, and friction elements. Moreover, the nodes are subject to inflation pressure forces in radial 

direction, and to the forces of the tread model. The part of the tire structure which is associated to one such 

belt node is called belt segment. Each belt segment has 5 degrees of freedom (figure 1): 

 
 
 

Fig. 1: Belt Segments’ Degrees of Freedom: (a) Translation, (b) Torsion (c), Lateral Bending 

c a b 

 

• longitudinal, lateral, and vertical displacement, 

• rotation angle about the circumferential axis (‘belt torsion’), and 

• bending in lateral direction, perpendicular to the circumferential axis. 
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Fig. 3: Measurement (bold line) and FTire simulation (thin line) of Radial Tire 
Characteristic with Hysteresis 

 

 
Fig. 2: Radial Force Elements between each Belt 

Node and Rim 

The elastic coupling between belt nodes and rim is described by nonlinear force elements in radial, circum-

ferential, and transversal direction, comprising springs, dampers, Maxwell elements and spring-friction series 

connections (‘elasto-plastic’ elements). Figure 2 shows the radial force element of one single belt node; 

circumferential and transversal elements are placed analogously. Maxwell elements are used to describe the 

‘tire stiffening’ at higher rolling speeds, whereas the dry friction element replaces rubber hysteresis. The ef-

fect of this hysteresis on overall tire radial stiffness can clearly be seen in measurements, as well as corre-

sponding FTire simulations (figure 3). 
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Fig. 4: Progressive Radial Stiffness due to Rim Flange Contact 

The radial stiffness elements are completed 

with unilateral stiff springs, located along the 

radial direction at the rim flanges. When tire 

deflection exceeds a certain value, these 

springs will come into contact with the inner 

side of the belt, thus generating an extremely 

progressive radial stiffness characteristic (fig-

ure 4). Depending on camber angle, this rim-

to-belt contact can happen on one rim flange 

only, or on both at the same time. Rim-to-belt 

contact enables to simulate certain tire mis-

use situations.  

 

In addition to the translational force elements, a torsional spring ctorsion (cf. figure 5) is located between each 

belt segment and the rim. These torsion springs serve as ‘elastic foundation’ of the belt segments torsion 

degree of freedom. Moreover, a bending stiffness acts against lateral belt bending. Together with the radial 

stiffness, they describe left and right side-wall stiffness. 

 

The following additional force elements are connecting neighbouring belt nodes: 



• a very stiff translational spring clong, (figure 5), providing the belt extension stiffness, 

• another torsional spring, connecting the torsion degree of freedom of two adjacent nodes (this spring is 

not depicted in figure 5), 

• a bending stiffness cbend,in-plane (figure 5), connecting three nodes in line, acting against belt bending per-

pendicular to the lateral axis (‘in-plane bending stiffness’), and 

• another bending stiffness cbend,out-of-plane (figure 5), acting against belt bending perpendicular to the radial 

axis (‘out-of-plane bending stiffness’). 

 

All stiffness values depend on the actual 

inflation pressure. The pressure is treated as 

an ‘operating condition’ and might be arbi-

trarily changed during a running simulation. 

This will not disturb the integration process 

in any way. Moreover, actual inflation pres-

sure depends on tire temperature, which is 

the output of the thermal model (cf. chapter 

1.1.3). Inflation pressure does not only affect 

the stiffness values, but generates extra 

forces, which act on the belt nodes in radial 

direction. These forces generate a mem-

brane tension, by expansion of the longitu-

dinal springs. This leads to a further ‘stiffen-

ing’ of the steel belt, similar to that one caused by the in-plane bending stiffness. 

 
Fig. 5: Belt Flexibility Stiffnesses 

 

Figure 6 shows the first eigenvalues of the linearized structure model, for three different radial deflection 

values. The linearization technique applied here can be used to compute transfer functions under different 

operating conditions as 

well. 

 

The structure model may 

be completed by specify-

ing several types of imper-

fections, to better match a 

real tire. These imperfec-

tions comprise: static and 

dynamic imbalance, radial 

and tangential non-

uniformity, ply-steer, 

conicity, and geometrical 

run-out. 

 

-300 -250 -200 -150 -100 -50 0
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Re

Im

 

 

Fig. 6: FTire Eigenvalue Location of Linearized Structure Model; 
 unloaded tire;  20 mm deflection;  40 mm deflection; 

real and imaginary axes are scaled differently 



1.1.2 Tread Model 
 

Between two neighbored belt segments, there are placed a certain number of mass-less contact and friction 

elements, to establish road contact (figure 7). Their number, between 5 and 50, can be selected by the user, 

depending on the desired road irregularity resolution. These contact elements constitute the tread model. 

 

The contact elements are either placed along parallel 

lines, or are distributed randomly, extending over the 

tread width. The exact positions at which the contact 

points are attached to the belt segments are smoothly 

interpolated, using the co-ordinates of the four near-

est-by belt nodes, as well as the actual belt’s cross-

section geometry. Vice versa, the forces that are 

generated by the contact elements will contribute to 

the external forces of all four belt nodes. The actual 

belt’s cross section geometry is defined by all de-

grees of freedom of the two nearest-by belt nodes.    

 

If the tread pattern is given in terms of a black-and-

white bitmap file, the contact elements’ lengths (that is, the local tread rubber height) may be set according to 

this pattern. In figure 8, the computed contact pressure of such a model is shown. Here, 120 segments and 

50 contact elements had been used; the con-

tact elements are placed along 25 parallel 

lines. This resulted in a tread resolution of 

approximately 0.5 x 12 mm for the large truck 

tire. Clearly, it would require an unacceptably 

large amount of contact elements to exactly 

resolve more complicated patterns, like for 

example those of passenger-car tires. 

 
Fig. 7: Distributed Contact Forces during Parking Manoeuvre 

  
 

Fig. 8: Tread Pattern Bitmap and Resulting FTire 
Contact Pressure Distribution 

 

During any integration step, for each contact element a rapid test is performed to check whether the element 

might have road contact. This test uses the position of the nearest-by belt element. If the test is passed, the 

exact distance of the contact element to the road surface is computed. Only if the contact element penetrates 

the road, the contact computation will be continued by determining the road surface tangential plane, the 

deflection, the resulting normal force, and more. 

 

The road tangential plane is computed individually for each contact element, by evaluating the road height in 

three different locations near the contact element. This is necessary to resolve even sharp-edged obstacles, 

like cleats and pot-holes. Road surface may depend on time, like it does for four-post test-rigs and rotating 

drums. In that case, both normal and tangential surface velocity is taken into account as well. 

 



The normal force is a function of deflection and deflection velocity, describing tread rubber compression stiff-

ness and damping. These values, in turn, are determined on basis of the tread rubber’s Young’s modulus, 

the tread pattern’s net-to-gross ratio, the local tread depth, and more. Clearly, pressure distribution and thus 

normal force strongly depends on the tire’s cross section geometry; most of all on the belt curvature in 

unloaded condition, as well as on tread depth as function of the lateral co-ordinate. This is why this geomet-

ric data can be prescribed in a very detailed way, by using look-up tables with smooth spline interpolation. 

 

After having computed the normal force, in the next step the vector-

valued friction force in the tangential plane is determined. Its absolute 

value is given by 

 

normaltreadground FTp ⋅),,slidefriction vF = (µ , 

 

whereas the direction is the negative sliding velocity direction. Sliding veloc

vector-valued force equilibrium condition of friction force, elastic shear force

the contact element (figure 9) in the road tangential plane. 

Fi

 

This force equilibrium condition results in a differential equation for the elem

Depending on the nature of the friction coefficient as function of sliding ve

might have a discontinuous right-hand side, or, even worse, might be unstab

solve such an equation is using implicit integration. It turns out that this int

discrete state variable, which memorizes whether the element was sticking to

ous time step. 

 

1.1.3 Thermal Model and Wear Model 
 

The tread model is completed by a thermal model and a model for tread wear

consists of 

• the thermo-dynamical computation of the actual inflation pressure as fu

tire inflation pressure’, tire temperature, and actual interior volume, and 

• a heat generation and transfer model, introducing state variables for the t

(including filling gas), and the individual temperature of each tread contac

transfer are driven by the 

power loss distribution due 

to structural damping and 

dry friction on the road sur-

face. As already mentioned, 

tread temperature influ-

ences road friction coeffi-

cient. 
 

Fig. 10: Regions of the Th
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In the heat generation and transfer sub-model, the tire is assumed as being separated into three regions, 

having different thermal properties each (figure 10): the tire structure (including bead, side-walls, belt, and air 

volume), the tread without contact patch, and the contact patch. The following assumptions are made for the 

three different regions. 

 

The tire structure is described by one global temperature only. The product of rate of change of this tempera-

ture and the tire structure’s overall heat capacity is balancing the sum of 

• the power loss in all energy dissipating force elements in the belt and side-wall, excluding friction and 

damping of the tread elements; 

• the heat which flows from the tire structure into the two tread regions. This heat transfer is determined by 

the respective temperature differences, multiplied by an appropriate heat transfer coefficient. This heat 

transfer coefficient is assumed to be independent on rolling speed; 

• the heat which is transferred from the side-walls into the air flowing around the tire. This transfer is de-

termined by the temperature difference between tire structure and ambient air, multiplied by an appropri-

ate heat transfer coefficient. This heat transfer coefficient is assumed to be strongly and nonlinearly de-

pendent on rolling speed. 

 

The tread without contact patch is described by a distributed temperature, assigning one value individually to 

each tread element. The product of rate of change of this temperature and the tread element’s heat capacity 

is balancing the sum of 

• the power loss in the tread element due to material damping; 

• the share of the heat which flows from the tire structure into the particular tread element, as already de-

scribed above; 

• the heat being transferred from the tread element to the air flowing around the tire. This heat transfer is 

determined by the temperature difference between tread element and ambient air, multiplied by an ap-

propriate heat transfer coefficient. Again, this heat transfer coefficient is assumed to be strongly and 

nonlinearly dependent on rolling speed, but has the same value for all elements not in contact to the 

road. 

 

The contact patch is described in a similar way like the remainder of the tread, with the following exceptions: 

additional power loss due to road friction is taken into account, and heat is transferred to the road instead of 

the surrounding air. Heat transfer coefficient be-

tween tread and road is assumed to be inde-

pendent on rolling speed.  

 
 

Fig. 11: Temperature Distribution in Contact Patch during 
Cornering at 6 deg Camber Angle 

 

As an example, figure 11 shows the resulting 

temperature distribution in contact patch, after 2 

s cornering at 4 kN wheel load, 4 deg camber 

angle, and 8 deg side-slip angle. 

 



The tread wear model uses the friction power (which is the product of friction force and sliding velocity), and 

a functional relationship between friction power and wear rate. These variables are used to update, individu-

ally for each contact element, the actual local tread depth: 

 

( )slidefrictionweartread vFfd ⋅−=&  

 

Accompanied by this reduction in tread depth, all tread properties that depend on tread depth will be modi-

fied respectively: compression stiffness and damping, shear stiffness and damping, heat capacity, and tread 

mass distribution. Thus, even imbalance and run-out caused by a locked braking will be seen as result of a 

respective simulation experiment. Clearly, both the thermal and the wear model can be deactivated. Con-

stant temperature and constant tread depth will be used in that case.  

 

1.1.4 Model Data and Parameterization 
 

As already discussed in chapter 1, ease of parameterization is one of the most important objectives of any 

tire model, and this of course holds for FTire as well. Here, a clear distinction is made between data used in 

the model equations (‘pre-processed data’), and data to be supplied by the user (‘basic data’). The underly-

ing idea is to define basic data which is as easy as possible to obtain, and which at the same time yield com-

plete information to determine the pre-processed data in a unique way. The more direct as well as sensitive 

single pre-processed data items depend on only few basic data, the more robustly, reliably and rapidly pre-

processing will perform. 

 

This pre-processing requires the solution of several nonlinear systems of equations, and will take some sec-

onds of computing time. After successful completion, the resulting internal data is appended to the basic data 

in the data file. When using this data file the next time, it will be checked whether basic data has been 

changed in any way. If not, pre-processing phase is skipped, using the appended data instead. 

 

Whether parameters are ‘easy to obtain’ might be seen very different by different users. What is ‘easy’ at one 

test facility might be difficult or impossible to get at another one. This is why there are different alternatives 

and combinations for some of the basic data, especially for that of the structure model. Moreover, not all data 

items are equally relevant for all applications. For example, in many cases belt out-of-plane bending stiffness 

does not affect the tire response when rolling over a transversal cleat, and the friction coefficients nearly do 

not influence the radial tire characteristic. 

 

Besides elementary data like tire and rim size, load index, speed symbol, mass, and rolling circumference, 

the structure model requires one out of several different combinations of static and modal data of the total 

tire. During pre-processing, the corresponding internal stiffness, damping, and inertia data are determined 

such that the resulting FTire model shows exactly this prescribed global behavior. 

 



The following data enumeration only reflects one possible such combination. A comprehensive and up-to-

date list of all data items can be found at www.ftire.com. Tools to assist in parameterization will be discussed 

in chapter 7. A typical FTire parameterization uses 

• tire size, load index, and speed symbol 

• rolling circumference 

• tire mass 

• rim diameter and rim width 

• tread width and tread depth as function of lateral tread co-ordinate 

• distance of tread grooves to steel belt (‘cap base height’) 

• tread pattern net-to-gross ratio (alternatively, tread pattern bitmap file) 

• mean lateral belt curvature radius of the unloaded tire’s cross-section (alternatively, detailed spline data 

of cross section geometry) 

• Young’s modulus of tread rubber 

• tread rubber adhesion friction coefficient for one up to three contact pressure value(s) 

• tread rubber sliding friction coefficient for two sliding velocities and one up to three contact pressure 

value(s) 

• natural frequencies and modal damping of vibration modes 1, 2, 4, and 6 (cf. figTure 12), for an unloaded, 

inflated tire with fixed rim, for one or two inflation pressure value(s) 

• vertical force 

Fig. 12: First Unloaded Vibration Modes for Use in FTire Parameterization and Validation 
 

o of standing tire on a flat surface, for two deflection values and one or two inflation pressure value(s) 

o of standing tire, both on a transversally and a longitudinally oriented cleat, for one or two inflation 

pressure value(s) 

o of standing tire at large camber angle, both on flat surface and a transversally oriented cleat, for one 

or two inflation pressure value(s) 

o of rolling tire on flat surface, for two different rolling speeds. 

 

1.1.5 Numerical Aspects and Implementation 
 

As discussed in chapter 4, tire models need to be very versatile with respect to the calling MBS software and 

the computing environment. For that reason, FTire is implemented in standard Fortran 90 (a Fortran 77 ver-

sion being also available), together with an interface for C and C++ solvers. Both the Fortran and C interface 



to the calling MBS solver is organized in terms of an API (Application Programming Interface), and compiled 

for all important Windows™- and Unix-type operating systems. Seemingly arbitrarily many instances of the 

model can be simulated at the same time, without interfering with each. 

 

The numerical integration basically is performed in two steps for each time increment. This time increment 

might be of fixed or variable length. It will be automatically subdivided into smaller steps if rim rotation incre-

ment exceeds a certain angle threshold (1 degree, say). Thus, FTire can be easily linked to MBS software 

which uses step-size controlling integrators, and yields sufficient accuracy independent on rolling speed. As 

with all highly dynamic sub-systems, the MBS solver’s 

integrator should be configured to limit the communica-

tion interval between MBS model and tire model to a 

reasonable value. In the case of FTire, a value less or 

equal to 1 ms is recommended. Otherwise, the MBS 

model cannot accurately follow any high-frequent tire 

excitation. Just one number might illustrate this: the 

tire’s total contact time to a cleat, run over at a speed 

of 200 kph, is less than 4 ms. Even though FTire ac-

cumulates the forces of the internally used smaller 

steps, the feed-back due to the change in rim velocity 

is decisive as well. 

 

In the first step of each local time increment, the con-

tact processor is called. It will perform all necessary 

updates of the tread-model related state variables, and compute the generalized forces that act between 

tread rubber and belt segments. The contact processor also calls the road evaluation routine, to determine 

location- and time-dependent 

road height and friction value 

modification. A simple pro-

gram interface to these 

evaluation routines was cho-

sen, to enable the connection 

of FTire to a wide variety of 

user-written and application-

specific road implementa-

tions. 

 

Fig. 13: Sparsity Pattern of Stiffness Matrix 

 

Fig. 14: CPU-Time of FTire, Depending on Belt Segments and Contact Patch Resolution 

 

In the second step, the tire 

structure model is updated. 

The size of this system is 

determined by the number of 

the belt segments’ degrees 



of freedom. Integration is done by a slightly modified implicit trapezoidal scheme, which in turn is a special 

case of the widely used Newmark integration. This integrator requires certain system Jacobians: the matrices 

of partial derivatives of acceleration variables with respect to position and velocity states. These matrices, 

being closely related to the linearized structural stiffness and damping matrices, are extremely sparse. More-

over, even though they depend on the actual values of the tire structure states, they can be computed ana-

lytically in only short extra computing time.  Figure 13 shows the non-zeros pattern (‘sparsity pattern’) of 

these matrices, which are so-called cyclic band matrices, in the case of 80 belt segments. Only 3.9 % of all 

matrix elements are non-zero. Even after Cholesky-factorization, this value is only about 7.8 %. This is im-

portant because the number of arithmetic operations to solve the system is closely related to the number and 

location of non-zero elements of the Cholesky factor. 

 

Figure 14 shows the resulting measured CPU-time of FTire, in dependency on both the longitudinal contact 

element distance (which determines the spatial contact patch resolution), and the number of belt segments. 

Computations had been performed on a 3GHz Pentium M™ processor under Windows XP™ operating sys-

tem, using Compaq Visual Fortran™ 6.6B compiler. Time step had been 0.5 ms. Thus, the maximum visible 

frequency was about 0.5 kHz. The diagram shows the real-time factor RTF, which is the quotient of CPU 

time to real time. Apparently, computing time depends nearly linearly both on the number of belt segments 

and on the number of contact elements. For a reasonable numerical tire discretization (80 belt segments and 

1 mm contact patch resolution), RTF is close to 3. 

 

More about FTire, including a free evaluation version and several validation results, can be found at [11]. 

 

1.2 FETire: Coarse-Mesh FE Tire Model 
 

Fig. 15: FETire: Mesh of Structure Model 

As mentioned above, FTire is completed with a 

‘coarse-mesh’ finite element model (FETire), and a 

‘rigid-ring’ model (RTire). All the members of this 

FTire model family, being of very different complex-

ity, use exactly the same program interfaces, and 

are designed to be data-compatible as far-reaching 

as possible. At present, FTire is understood as the 

most important member of the model family, be-

cause it seems to be the best compromise between 

application range, accuracy, and computing time for 

most vehicle dynamics investigations. 

 

FETire, on the other hand, requiring about 50 to 

100 times more CPU time than FTire, today is 

mainly used for 

• assistance in the parameterization of FTire, 



• theoretical investigations on tire response to ‘non-standard’ excitations, and 

• studies about influence of tire design characteristics to handling and ride comfort properties. 

 

However, with ever growing computing power, and complexity of suspension models, FETire might be used 

more widely in the future, even with full vehicle models. Real-time factor is about 300 at present, so 10 s 

simulation of a full vehicle completely equipped with FETire, would take about 4 h CPU time. This might be a 

tolerable effort for occasional or special inves-

tigations. 

 

Similarly as FTire, FETire comprises a struc-

ture model and a tread model. The structure 

model (figure 15) uses some 1000 to 5000 

lumped-mass nodes, having three translational 

degrees of freedom each, and being connected 

by a non-linear network of springs and damp-

ers (figure 16). This coarse finite element mesh 

is automatically generated, using the cross 

section geometry of the unloaded and un-

inflated tire only. The distributed membrane 

stiffness and damping of the layered tire shell 

structure, consisting of carcass layers, belt layers, bandage layer, bead filler, etc., is computed during pre-

processing. It is replaced by the above mentioned anisotropic, geometrically fully nonlinear spring and 

damper network (dampers not displayed in figure 16). Stiffness and orientation of the springs is computed 

such that the resulting linearized stiffness matrix exactly coincides with the membrane stiffness matrix of the 

layered structure, separately in each cross section region. By this procedure, for example, very stiff springs 

are created in the belt region, following the two belt cord direction angles ( in figure 16). diagc

 

 

longc
diagc

latc

 

Fig. 16:  Springs Replacing Anisotropic Membrane Stiffness 

 

This membrane stiffness model is completed by 

the plate stiffness model, which uses discrete 

bending stiffness elements. These elements 

connect any three longitudinally and laterally 

neighbored nodes in the belt and side-wall re-

gion (figure 17). 

 

Finally, radial forces due to inflation pressure 

contribute to the nodal forces. They act along the 

shell normal direction, being in turn a nonlinear 

function of all neighbored node positions. Infla-

tion pressure is computed as thermodynamic 

function of inner volume and air temperature. 

Inner volume, in turn, is a simultaneous function of all shell node positions. 

 

 
bend,long c

bend,lat c 

Fig. 17:  Longitudinal and Lateral Bending Stiffness in Shell Structure 



 

Similarly as with FTire, a highly specialized Newmark-type implicit integration is applied to the nodal degrees 

of freedom. This integrator takes full advantage of the sparsity pattern of the system Jacobian, and exploits 

the fact that the tire structure undergoes largest strains in the vicinity of the contact patch only. 

 

In contrast to FTire, the tread model consists 

of finite elements that are equipped with mass 

(figure 18). To each quadruple of neighbored 

shell nodes in the belt region ( ), a certain 

number (4, say) of tread nodes ( ) is associ-

ated. These tread nodes are coupled by a 

nonlinear radial and tangential stiffness each 

to their four associated shell nodes. The 

treatment of road contact and friction is essen-

tially the same as in FTire. 

 

There are two special versions of FETire 

available. FETire/modal performs linearization 

and modal analysis of the unloaded tire (figure 19). FETire/static is used for rapid non-linear static load-case 

calculation of the loaded but standing tire (figure 20). The latter uses mesh refinement near the contact patch. 

For rolling tires, this refinement would lead to an unacceptable computational overhead when shell nodes 

enter or leave the refinement region. 

 

    

 
 

Fig. 18:  Tread Nodes ( ) with Associated Shell Nodes ( ) 

 

Both special versions 

are optimized for CPU 

time, and can be used to 

assist in FTire parame-

terization (cf. section 7). 

 

To compute stiffness 

data of the shell struc-

ture, FETire uses a pa-

rameterized description 

of the plies and all other 

important tire com-

pounds. This description 

is implemented in terms of template files, called tire-design data files. Each tire-design data file qualitatively 

describes a certain class of tires, like passenger car tires, motor-cycle tires, and so on. In such a file, the 

tire’s cross section is separated into several regions, like bead core, apex, side-wall center, shoulder, belt 

zenith, etc. Associated to each region, there is a layer list, enumerating each layer together with is thickness, 

 

  

108 Hz 

112 Hz 141 Hz 171 Hz 203 Hz 

156 Hz 191 Hz 221 Hz 

Fig. 19:  FETire/modal: First Eight In-Plane and Out-of-Plane Bending Modes of an Unloaded Passen-
ger Car Tire. 5130 degrees of freedom, 6 s CPU time for all modes 



matrix rubber stiffness, cord stiffness (if any), and cord thread angle. Figure 21 shows an example of such a 

layer list. 

 

A layer list does not contain numerical values, but rather few variables only. The actual values of these vari-

ables, like belt cord density, belt cord direction angle, layer height, etc., together with a spline-based descrip-

tion of cross section geometry and tread depth finally are added to the tire-design data file to describe a spe-

cific tire. To a certain degree, this approach allows a very simple extrapolation, starting from the data of one 

tire size to estimate the data of another, similar one. 

 
Fig. 20:  FETire/static: Load-Cases ‘Transversal Cleat’ and ‘Longitudinal Cleat’. 

Deflection 35 mm, structural distortion compared to that of unloaded tire. 6750 degrees of freedom, 92 s CPU time per load-case 

 

Of course, the accuracy of 

FETire does not reach that of 

detailed FE models. FETire is 

proven compromise between 

accuracy and computational 

efficiency. It is of value as long 

as detailed FE models can not 

r

 
 

 

 

2
 

P

d

(

 
$layer_list_8 ! belt zenith ********************************************
*-----------------------------------------------------------------------
* cr.sect. cord dens. height   alpha       E cord E matrix  type 
* mm^2     thr/mm     mm       deg         N/mm^2 N/mm^2 
*-----------------------------------------------------------------------
s_belt = 0.5 
  0.0      0.0        h_il      0.0        0.0    E_il   ! inner liner 
  A_carc   d_carc     h_carc    ang_car1   E_carc E_cp   ! 1. body ply 
  A_carc   d_carc     h_carc    ang_car2   E_carc E_cp   ! 2. body ply 
  A_belt   d_belt     h_belt    ang_belt   E_belt E_bp   ! 1. belt ply 
  A_belt   d_belt     h_belt   -ang_belt   E_belt E_bp   ! 2. belt ply 
  A_carc   d_band     h_band    0.0        E_carc E_b    ! 1. bandage 
  A_carc   d_band     h_band    0.0        E_carc E_b    ! 2. bandage 
  0.0      0.0        h_base    0.0        0.0    E_tr   ! tread base 

 
Fig. 21: Single Layer List of a Passenger Car Tire-Design Data File 
yet be used, for many different 

easons, in time-domain non-linear vehicle dynamics simulations. 

 

 Parameterization Tools 

arameterization of any tire model, as mentioned above, always is a delicate task. Basically, there are five 

ifferent procedures used in practice: 

1) direct determination of parameters by using appropriate measurements, or 



(2) usage of a detailed FE model, together with a ‘condensation process’, to directly compute the parame-

ters, or 

(3) usage of measurements of the global tire behavior to estimate the model parameters by means of least 

squares approximation (‘parameter identification’), or 

(4) performance of simulations with a detailed FE model, to generate ‘virtual measurements’, subsequently 

used for parameter identification as in (3), or 

(5) usage of a well-validated data file, and application of certain ‘extrapolation formulae’ to estimate the tire 

data of another size, ‘not too far away’ from the validated size. 

Clearly, due to the different nature of model parameters, none of these five procedures will be used unadul-

terated. Some data will always be measurable directly, like for example simple geometric properties that are 

only depending on tire size, or on tread rubber friction coefficients. Some other data can never be deter-

mined directly, for example something artificial like ‘the stiffness matrix coupling two adjacent belt segments’. 

For the FTire model family, as an example, tools that assist with procedures of type (3), (4), and (5) are avail-

able, cf. figure 22. 

 

The first one, called FTire/calc, performs a series of static load-case calculations with FETire/static. These 

calculations are controlled by a simulation script, and run fully automatic. They compute the static tire forces 

and moments under several different conditions, like 

• vertical deflection on a flat surface, 

• vertical deflection on a transversally and a longitudinally oriented cleat, 

• vertical deflection with different camber angles on flat surface and on cleats, 

• lateral wheel displacement, at a high friction value, 

• longitudinal wheel displacement, at a high friction value, and 

• wheel rotation about vertical axis, at a high friction value. 

 

All these computations are performed with several different deflection values and inflation pressures. The 

resulting static data is completed by the first resonance frequencies and modal damping values, computed 

with FETire/modal. Here, the same tire design data is used as with FETire/static. Some of the results are 

used to generate an FTire input file, some others to validate the respective FTire model. A full cycle of an 

FTire parameterization with FTire/calc only takes about 1 to 10 min CPU time, depending on the chosen grid-

size of the FETire mesh, and thus the accuracy that is achieved. 

 

FTire/fit, the second tool, assists with a procedure of type (3). It provides several optimization routines that 

minimize the least squares distance between cleat test measurements and respective simulations with FTire. 

In addition, FTire/fit assists in repeatedly and rapidly performing other script-based validation simulations, 

like side-force or µ-slip characteristics. Typically, the optimization step will require some 1000 evaluations of 

the objective function (which is the least squares sum). Each evaluation, in turn, will perform a certain num-

ber (10, say) of cleat test simulations at different rolling speeds, cleat geometries, cleat orientations, wheel 

loads, camber angles, and inflation pressures. 



A typical cleat test will provide relevant tire response signals for a time span of 200 ms, and the FTire real-

time factor (RTF) is close to 3 (cf. figure 14). Thus, the required CPU time of such a parameter identification 

cycle is of the order of magnitude of at least 
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Fig. 22: FTire Parameterization and Application Tools 

 

min100s32.0101000RTF =⋅⋅⋅≥⋅⋅⋅= simtestscleatevalCPU tnnt . 

 

This number is only a lower bound, because in addition an FTire pre-processing step has to be performed for 

each objective evaluation.  

 

FTire/fit is not meant to be a ‘black-box tool’, which provides results by few mouse-clicks only. Rather, it re-

quires a certain expertise to select and prepare appropriate cleat test measurements, and to decide what 

parameters should be determined by what kind of cleat tests, and in what sequence. Moreover, it requires 

expertise as well to assess whether or not the optimization really is successful, or should be aborted due to 

non-convergence, or convergence against a non-global minimum. As with all applications of computer opti-

mization, there is no guarantee at all that the global optimum really was found. This introduces uncertainty 



about the quality of the result, which only can be overcome by having experience with previous similar com-

putations. It seems to be logical to only use a standardized measuring procedure, and to use FTire/fit always 

in the same way in conjunction with this procedure. This is the best way to achieve comparable FTire data 

for different tires. 

 

Finally, there is a third tool (FTire/estimate, figure 23) available which implements a procedure of type (5). 

FTire/estimate uses a well-validated FTire data file, representing a whole family of similar tires. Using this tire, 

it relates its stiffness and modal data to the respective values of other tires in the family, which might differ in 

section width, aspect ratio, rim size, mass, maximum load, maximum speed, radial stiffness, or nominal infla-

tion pressure. 

 

Fig. 23: FTire/estimate User Interface (GUI) Showing Default Estimation Formulae 

 

This relation is described in terms of functional dependencies: the changes in static and modal tire data are 

functions of the change in one or more influence parameters. These influence parameters are: tire section 

width, tire diameter, side-wall height, tire mass, rated maximum load, rated maximum speed, radial stiffness, 

and nominal inflation pressure. 

 

Clearly, these data items are not all independent on each other. Some of them are provided by the estima-

tion program for completeness only. For example, it might be more natural to express the dependency of an 



eigenvalue on mass than on tire size, even if both will change simultaneously. In any case, it is sufficient to 

use only the most relevant influence parameters in the formulae. 

 

The influence functions used by default are based upon simple mechanical analogy considerations. However, 

they can be easily customized. A user might wish to enhance his copy of FTire/estimate, based upon his 

experience, in the sense of an expert system. Clearly, this experience can be easily completed by studies 

with detailed FE models, or by evaluating respective measurements. 
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