cosin
scientific software

cosin scientific software AG

Hans-Stutzle-Str. 20
81249 Miinchen

GERMANY
info@cosin.eu
Www.cosin.eu
Contents
1. Overview on Interfaces to the FTire Tire Model Family 1
1.1. Reference Platforms for the FTire Tire Model Family 1
1.2, Interface Types 1
2. Overview on CTI 3
3. CTI API Documentation 6
3.1. Tirehandles 6
3.2. Program Structure of CTI Applications 6
3.3. API Function Reference 6
3.3.1. ctiAdjustTwinTireWheelSpeed 6
3.3.2. ctifnimate 6
3.3.3. ctifnimateOnly 7
3.3.4. ctilnimateScene 7
3.3.5. ctiCheckLicense e e 8
3.3.6. ctiClose e 8
3.3.7. ctiCloseTire o o v i e 8
3.3.8. ctiComputeForces 9
3.3.9. ctiComputeForcesOnCarBody v v it i 11
3.3.10. ctiComputeForcesOnWheelCarrier o o v v v i i 12
3.3.11. ctiComputeForcesPosition 14
3.3.12. ctiComputeForcesTimeContinuous o v v v v e 14

3.3.13.
3.3.14.
3.3.15.
3.3.16.
3.3.17.
3.3.18.
3.3.19.
3.3.20.
3.3.21.
3.3.22.
3.3.23.
3.3.24.
3.3.25.
3.3.26.
3.3.27.
3.3.28.
3.3.29.
3.3.30.
3.3.31.
3.3.32.
3.3.33.
3.3.34.
3.3.35.
3.3.36.
3.3.37.
3.3.38.
3.3.39.
3.3.40.
3.3.41.
3.3.42.
3.3.43.
3.3.44.
3.3.45.
3.3.46.
3.3.47.

ctiEnableTimeContinuous 15
ctiEvaluateRoadCourse 15
ctiEvaluateRoadHeight 16
ctiFindOutputSignalNumber e 17
ctiGetArraySize 17
ctiGetContactBodyForces 18
ctiGetCosinSoftwareVersiono 19
ctiGetFileName 19
ctiGetInstallationInfo 21
ctiGetLTIMatrix 21
ctiGetNodePositions 22
ctiGetNodePositionsWithAttributes 23
ctiGetNumberContinuousStates 24
ctiGetOutputSignallabel 24
ctiGetOutputSignalNumber e e 25
ctiGetOutputSignals e 25
ctiGetPlotSignalo 26
CtiGetPlotSignals 31
ctiGetRimForces 31
ctiGetRimPropertieso 31
ctiGetRimRotationStates L. 32
ctiGetRoadDependFiles e 32
ctiGetRoadForces 33
ctiGetRoadParameterso 33
ctiGetRoadPropertieso e 34
ctiGetRoadSize 35
CtiGetStatus 36
ctiGetStepSize e 37
ctiGetTireDependFilest e e 37
ctiGetTireDimensionData 38
ctiGetTireDimensionStringData i e 39
ctiGetTireHandle 40
ctiGetTireInstance 40
ctiGetTireKeyData e 41
ctiGetTireModelTyPe« o o v i e e e 42

3.3.48.
3.3.49.
3.3.50.
3.3.51.
3.3.52.
3.3.53.
3.3.54.
3.3.55.
3.3.56.
3.3.57.
3.3.58.
3.3.59.
3.3.60.
3.3.61.
3.3.62.
3.3.63.
3.3.64.
3.3.65.
3.3.66.
3.3.67.
3.3.68.
3.3.69.
3.3.70.
3.3.71.
3.3.72.
3.3.73.
3.3.74.
3.3.75.
3.3.76.
3.3.77.
3.3.78.
3.3.79.
3.3.80.
3.3.81.
3.3.82.

ctiGetTireProperties 43
ctiGetTreadStateso 44
ctiGetTydexSignals 45
ctilnit 46
ctiKillSolverOnESC e e e 47
ctilinearize 48
ctilinearizeWheelCarriero e 49
ctiloadControlData e e e 51
ctiloadList 52
ctiloadRimData 53
ctiloadRimModel L. e e e 54
ctiloadRoadDatao e 55
ctiloadRoadModel e e e e 55
ctiloadSoilModel 56
ctiloadSuspensionDatao 57
ctilLoadTireData 58
ctiModifyFriction 58
ctiOpenOutputFile e 58
ctiOpenRoadGui 59
ctiOpenTireGui 59
ctiQuarterCar 59
ctiReadLTIMatrices oL 64
ctiReadOperatingConditions 65
ctiReadStates L 65
ctiReadStatesMemory 66
ctiRecorder 67
ctiReset 67
ctiSaveRecordedForcesMomentso e e 68
ctiSetAffinity L. 68
ctiSetAmbientTemperature 68
ctiSetAnimationStepSize 69
ctiSetCompatVersion 69
ctiSetContactBodyMotionData 70
ctiSetDesignParameter 70
ctiSetDiagMode e 71

3.3.83. ctiSetDrumTorque e 71

3.3.84. ctiSetInflationPressure 72
3.3.85. ctiSetInitialRimAngle 72
3.3.86. ctiSetInitialTemperaturet 72
3.3.87. ctiSetInitialTireTemperatures« v v i it 73
3.3.88. ctiSetIntegerRoadParameter 73
3.3.89. ctiSetMultiThreadedCallFlag o v v v vttt 73
3.3.90. ctiSetNotify 74
3.3.91. ctiSetOption 75
3.3.92. ctiSetOutputFilePrefix 75
3.3.93. ctiSetOutputStepSize e 75
3.3.94. ctiSetPrmHandle 76
3.3.95. ctiSetRGRCanvasGeometIY« . ..o e e e e 76
3.3.96. ctiSetRoadEvalPreference i e e 7
3.3.97. ctiSetRoadMotionData e e e e 7
3.3.98. ctiSetRoadParameters o 7
3.3.99. ctiSetRoadTemperature i e e 78
3.3.100ctiSetRunTimeMode 78
3.3.101ctiSetStatesMemory i e e 79
3.3.102ctiSetTimeConstantForces o i e e 80
3.3.103ctiSetTirePPDataFileName o v vt 80
3.3.104ctiSetTireSide e 81
3.3.105ctiSetTreadDepth 81
3.3.100ctiSetUPROXY o e e 82
3.3.107ctiSetURIM o i e 82
3.3.108ctiSetURM 82
3.3.109ctiSetURGM L 83
3.3.110ctiSetUSM 84
3.3.111ctiSetVehicleStates 84
3.3.112ctiSetWheelCenterRefPosition 84
3.3.113ctiUpdateRoadData v e e 85
3.3.114ctiUpdateWheelEnvelope 85
3.3.115ctiVerbose 85
3.3.116ctiWriteAdditionalOutput 86
3.3.117ctiWriteCustomizedTireData 86

3.4.

3.5.

3.6.

3.3.118ctiWriteLTIMAtTiCes« « v v v e e e e
3.3.119ctiWritePlotSignallabels
3.3.120ctiWriteRoadDatao e
3.3.121ctiWriteStates e
3.3.122ctiWriteStatesMemoryo
3.3.123ctiWriteWheelEnvelope
Client related APl Function Reference
3.4.1. ctiConnectTOSETVET« « v v v i it e
API Type Definition Reference
3.5.1. typedef CTIINITt v v i ittt et e e e e e e
3.5.2. typedef CTINOTIFY i ittt it e e e
3.5.3. typedef UMSGF
3.5.4. typedef UPROXY o oo o
3.5.5. typedef URIM o
3.5.6. typedef URM i e
35.7. typedef USM

Deprecated API Function Reference

4. CTI Multi-Threading Extension (CTIMT)

4.1.
4.2.

Program Structure of CTIMT Applications
API Function Reference
4.2.1. ctiComputeForcesList
4.2.2. ctiComputeForcesListMT
4.2.3. ctiComputeForcesMT
4.2.4. ctiComputeForcesOnWCarrierList
4.25. ctiComputeForcesOnWCarrierMT i
4.2.6. ctiComputeForcesWithOutputArraylist
4.2.7. ctiGetForcesListMT i e
4.2.8. ctiGetForcesMT e
4.2.9. ctiReadStatesMemoryListo

4.2.10. ctiWriteStatesMemoryList

5. CTI Dynamic Library Wrapper

5.1.

APl Function Reference
5.1.1. ctidlClose . . . o o

5.1.2. ctidlGetCosinGuiPath

99

99
100
100
102
103
105
107
108
110
111
111
112

113
114
114
114

5.1.3. ctidlGetCosinInstallFolder« . o v i 114

5.1.4. ctidlGetTireDataFileName 115
5,15, ctidlInit oo 115
5.1.6. ctidlOpenCosinGui 116
5.1.7. ctidlOpenRoadGui 116
5.1.8. ctidlOpenTireGui 117

5.2. API Type Definition Reference L 117
5.2.1. typedef CTIDLINIT o oo 117

. CTl/server Client Interface (CTICLI) 118
6.1. Program Structure of CTICLI Applications 118
6.2. CTI/ CTICLI gateway 119
6.3. CTICLI Function Coverage i 120
6.3.1. Client handles 120
6.3.2. CTICLI functions with a corresponding CTI function and identical parameter list 120
6.3.3. CTICLI functions with a corresponding CTI function and different parameter list 123
6.3.4. CTICLI functions without a corresponding CTl function 123
6.3.5. CTI functions without a corresponding CTICLI function 124

6.4. API Function Reference 126
6.4.1. cticliDownloadFile i i e e e e 126
6.4.2. cticliGetServerStats 126
6.4.3. cticliInit 127
6.4.4. cticliListFiles i e 127
6.4.5. cticliLoadCtiLibrary 128
6.4.6. cticliloadRimData 128
6.4.7. cticliLoadRoadData v v i e e e e e e 129
6.4.8. cticliloadSuspensionData e 130
6.4.9. cticliLoadTireData v e e e 130
6.4.10. cticliUploadFile« v v v e e 131
6.4.11. cticliGetForcesListMT e 131
6.4.12. cticliGetForcesWithOutputArrayListMTo v v 132
6.4.13. cticliGetLastExecTime« v v i e 133

6.5. API Type Definition Reference 134
6.5.1. typedef CTICLICOMMTYPE o i i ittt st e e e e 134
6.5.2. typedef CTICLIINIT o . o oot 134

vi

A. Additional Tables

A.l. Supported Labels for ctiFindOutputSignalNumbero 136
A.2. Subset of TYDEX Output Signals 145
147

Index

vii

This documentation chapter describes the preferred interface to the FTire Tire Model Family. The interface
is called CTI = cosin Tire Interface and is available in terms of a comprehensive ANSI C compliant program
interface (API). The installation package comprises demo program code demonstrating different typical kinds of

usage, as well as a variety of example data files.

The chapter limits to calling FTire and its functionality from within a 3"%-party application. For material about the

modelization and parameterization of FTire, as well as related tools, please refer to FTire or visit www.cosin.eu.

1. Overview on Interfaces to the FTire Tire Model Family

1.1. Reference Platforms for the FTire Tire Model Family

All members of the FTire Tire Model Family, comprising FTire (recommended), FETire, and HTire, are available

for operating systems
e Windows 7 or any later
e RHELG or any later
e Mac OS X 10.12 or any later,
and realtime targets
e Concurrent Redhawk 6 or any later
e dSPACE.

For a detailed and actual list of supported platforms, please refer to www.cosin.eu/support/supported-platforms

1.2. Interface Types

There are four classes of interfaces to the FTire Tire Model Family available:

e a time-discrete generic interface (CTI), being an ‘easy-to-use’ and very comprehensive APl which
reduces the implementation effort to a minimum. CTI provides unrestricted access to all FTire fea-
tures, without requiring any knowledge of internal implementation specialties. This interface is used
by the FTire Tire Model Family implementations in all Adams variants, Simpack, DADS/VirtuallLab
Motion, Altair MotionSolve, RecurDyn, FEDEM, CarSim/TruckSim/BikeSim, Matlab/Simulink (inside
FTire/link, see below), Abaqus, Modelon, PAM-CRASH, and many others (find the actual list here:

www.cosin.eu/support/cae-software-compatibility);

e the (obsolete) time-continuous TYDEX/STI interface (STI Version 1.4). This interface had been

defined for use in commercial MBS-codes (cf.: TYDEX-Format (Release 1.3) and Standard Tyre

http://www.cosin.eu
https://www.cosin.eu/support/supported-platforms
https://www.cosin.eu/support/cae-software-compatibility

Interface (Release 1.4). Presented at: 2"¢ International Colloquium on Tyre Models for Vehicle Dynamics
Analysis. February 20-21, 1997). All existing implementations of STI with respect to the FTire Tire Model
Family are nothing but additional program layers, internally using and calling CTI functions. Cosin strongly
advises against using this outdated interface, since it is by no way able to make use of the full FTire

functionality;

e an interface to Matlab/Simulink (FTire/link). This implementation is another layer in terms of S-
functions, in turn using and calling appropriate CTI functions. These S-functions are completed by a

respective comprehensive Simulink block-set;

e an interface to SIMulationWorkbench (SimWB). Again, this implementation is another layer around the
CTI interface, used for Hardware-in-the-Loop applications under hard real-time conditions (see FTire/RT

for more).

All interfaces mentioned are such that arbitrarily many instances of the same or different members of the FTire
Tire Model Family can be run simultaneously, either in sequential or in parallel (multi-threaded) mode. In either
case, the coupling to the vehicle or suspension model of the calling program is done by the rigid body state

variables of the rim, that is
e position of the rim center in the global coordinates,
e translational velocity vector of the rim center,

e angular orientation of the rim, defined by the transformation matrix from the rim-fixed frame to global
coordinates. If needed, the FTire Tire Model Family provides routines to calculate this transformation
matrix out of the Euler angles, Bryant angles, Cardan angles, ISO vehicle dynamics angles, quaternions, or

Euler parameters of the rim, depending on what is available in the calling simulation model,
e angular velocity vector of the rim.

These values are the inputs to the respective member of the FTire Tire Model Family. On the other hand, all

supported tire models provide as output
e the tire force vector, acting on the rim
e the tire torque vector, acting on the rim.
Point of reference for forces and moments is chosen to be the geometrical rim center.

Alternatively, all members of the FTire Tire Model Family can be used to simultaneously integrate the rim rotation
w.r.t. the wheel carrier. In this use mode, not the rigid-body states of the rim, but those of the wheel carrier are
the inputs, together with the driving and the maximum absolute braking torque. The output torque vector then
does not contain the share in the direction of the wheel rotation. All members of the FTire Tire Model Family
eventually modulate the braking torque, if the wheel is blocked, in order to exactly maintain this blocking as

long as it is necessary.

2. Overview on CTI

The cosin Tire Interface (CTI) is the preferred interface to all members of the FTire Tire Model Family. Addi-

tionally, CTI can be used to connect to certain user-definable types of tire models.

CTl is designed and optimized especially for time-discrete implementations of tire models, being called by arbitrary
types of integrators, using both fixed step-size or controlled step-size. There is, however, also support for 37%-party
tire models which require integration of state variables by the calling software, and which are connected via the
STl interface. CTI provides simple access to the FTire model family not only for commercial MBS software, but

also for customer-specific ‘in-house’ simulation packages.

CTI is implemented in terms of an APl (Application Programming Interface), consisting of 130+ C functions.
These functions are called from user-defined C and C++ application programs or libraries. In Windows, the API
is realized as a dynamic link library (.dll). For Linux platforms, it is a shared object (.so, .sl), whereas, on Apple

Macintosh, it is a dynamic library (.dylib).

CTI and all members of the FTire Tire Model Family support all cosin/road road models, as described in the

respective documentation chapter.

The API provides external entries as listed below. Most important entries are ctiComputeForces and its alter-
natives ctiComputeForcesTimeContinuous, ctiComputeForcesOnWheelCarrier and

ctiComputeForcesOnCarBody.

CTI keeps and manages all parameters, state variables, working arrays etc. internally, for up to 100 tire instances.
It is very easy to increase this maximum number of tires if necessary. Memory for all arrays is allocated dynamically.

By this, CTI uses dynamic memory allocation and is designed for a small RAM footprint.

Pre-processing, initialization, time step management etc. is done automatically, inside the core routines ctiComputeForces,
ctiComputeForcesTimeContinuous and
ctiComputeForcesOnWheelCarrier. In most cases, only one of these core routines will be used at a time.

However, they could be used simultaneously as well.

The two routines ctiloadTireData and ctiloadRoadData are called only once for each tire instance. They
provide tire or road data, respectively, by opening, reading, and pre-processing the respective data files. Both
routines automatically recognize whether a file already had been opened by another tire instance. If so, the

pre-processed data will just be copied instead of being re-calculated.

Routine ctiReadOperatingConditions reads and loads operating conditions that may optionally be specified

in the tire data file.

With routine ctiGetTireKeyData, several important tire properties can be queried, like static, dynamic, and
maximum tire radius, mass, moments of inertia, etc. These data might be needed by the calling vehicle simulation

program.

The three routines ctiSetInflationPressure, ctiSetTreadDepthand ctiSetAmbientTemperature are used
to set and control tire operating conditions (inflation pressure, tread depth, and temperature), which might vary

with time. Typically, they are called before, or occasionally during, a running simulation.

The two optional routines ctiSetRoadMotionData and ctiGetRoadForces are used to introduce an arbitrary
body as ‘moving road’, and to apply the tire reaction forces to this body. Note that, due to belt inertia forces
and tire weight, the forces and moments acting on the rim will differ not only in sign from the ones acting on the

road.

The routines ctiOpenOutputFile, ctiVerbose, ctiGetTydexSignals, ctiGetOutputSignal,

ctiGetNodePositions, ctiUpdateWheelEnvelope and ctiWriteWheelEnvelope are optional as well, and
are used for auxiliary or diagnostic output specification. With ctiOpenOutputFile, the name of an additional
output file may be defined. This file will contain several columns of additional output signals and can be loaded into
Matlab, say, for further analysis. ctiVerbose allows to set or unset verbosity mode. ctiGetTydexSignals
provides the standard TYDEX/STI output variables (namedVARINF in TYDEX/STI) together with additional
tire-model-specific output signals. ctiGetOutputSignal searches for, and eventually puts out, a single output
signal. ctiGetNodePositions returns the actual position of tire surface nodes in several co-ordinate systems

to be used for customer-specific animation, etc.

The routines ctiReadStates and ctiWriteStates can be used to save and restore complete tire model state

information. Note that each tire instance will need a separate file to keep the states.

With ctiSetRunTimeMode, certain settings can be chosen which influence the speed of computation. In many
cases, the most restrictive setting will make the tire model real-time capable. This is achieved through switching off

all non-standard model extensions, suppressing all extra output, and reducing geomatry as well as time resolution.

ctiEvaluateRoadHeight and ctiEvaluateRoadCourse make cosin/road's internal road evaluation routine
available to the calling software. Typically, the tire model will be the only subsystem which really ‘sees the road.
It might be useful, however, that the same road can be evaluated outside the tire as well. As an example, the
road height profile sometimes is to be displayed in an animation scene, or a driver model is to follow the road

course.

Finally, ctiClose performs all necessary termination actions, like closing all files, closing the graphics window,

etc. and has to be called after the simulation has finished.

By default, all log and error messages are put out to stdout printf(..), and user input (if any) is read from stdin
scanf (..). Users can as well use their own messaging and logging routines by registering a message handler

callback function (see ctiInit, typedef CTIINIT and typedef UMSGF).
A demo application source code ctiDemo.c is included with the distribution package.

For all platforms, when calling FTire, CTI provides on-line animation of the FTire structure and the contact

patch force, friction, and temperature distribution. This animation is based on OpenGL rendering.

3. CTIl APl Documentation

3.1. Tire handles

Tire handles are unique identifiers of the current tire. The tire handles are freely definable by the user (also

negative values are allowed).

3.2. Program Structure of CTI Applications

Typical CTI application will be structured as follows:
1. Call ctiInit to initialize the interface.

2. Loop over all tire instances to be computed, loading tire and road data with routines ctiLoadTireData

and ctiloadRoadData.

3. Enter the time loop. In every time step, loop over all tire instances and evaluate tire force/torques by passing

wheel position and velocity variables by calling ctiComputeForcesor ctiComputeForcesOnWheelCarrier

4. Terminate all threads and CTI functions by calling ctiClose.

3.3. API Function Reference
3.3.1. ctiAdjustTwinTireWheelSpeed

Adjust twin or dual tires wheel speeds.
Prototype:

void ctiAdjustTwinTireWheelSpeed (int thl, int th2);

Parameters:
in thil tire handle first wheel of twin wheels
in th2 tire handle second wheel of twin wheels

3.3.2. ctiAnimate

Set/unset animation mode.
Prototype:

void ctiAnimate (int th, int an);

Parameters:

th

tire handle

an

animation flag

<0 exit without any changes

0 online animation for tire th off

1 online animation for tire th on

2 online animation for tire th as before

3 online animation for tire th off, offline animation on
4 online animation for tire th on, offline animation on

5 online animation for tire th on, use new settings from an only if animation was

off before

3.3.3. ctiAnimateOnly

Set/unset animation mode, only one tire.

Prototype:

void ctiAnimateOnly (int

th, int an);

Parameters:
in th tire handle
in an animation flag

0 animation for all tires off

1 animation for tire th on, for all others off

2 animation for tire th as before, for all others off

3.3.4. ctiAnimateScene

Animate complete scene show actual frame for all tires.

Prototype:

void ctiAnimateScene (void);
Parameters:

none

3.3.5. ctiCheckLicense

Check license.
Prototype:

void ctiCheckLicense (int* mode, charx feature);

Parameters:
lyx
out mode license mode:
<9 license available (of any of professional or academic types)
9 no license available
in feature license feature to check
Note: feature 'ftsoil’ was renamed at cosin version 2022-1 to 'dynroad’ and will
be internally checked instead of 'ftsoil” from 2022-1 onward.

3.3.6. ctiClose

Close interface. Will be called automatically once all tire handles had been closed.
Prototype:

void ctiClose (void);

Parameters:

none

3.3.7. ctiCloseTire

Close tire handle.
Prototype:

void ctiCloseTire (int th);

Parameters:

in th tire handle

3.3.8. ctiComputeForces

Main routine.
Prototype:

void ctiComputeForces (int th, double t, double r[], double a[], double v[], double w[], int

mode, double f[], double m[], intx ier);

Parameters:
in th tire handle
in t simulation time [s]
in T rigid-body state of rim: position of rim center in global coordinates [m]
in a rigid-body state of rim: 3x3 orthogonal transformation matrix A from rim-fixed
frame to global coordinates. Vectors in rim-fixed frame are to be multiplied by a
0
to result in the representation in global coordinates. Example: A- | 1 | =
0
second column of A = direction vector of wheel spinning axis in global
coordinates.
Note: A is stored column-wise (like in Matlab and Fortran, but not in C or C++),
A =[A11,A2,Az1, A2, Az, Asa, A13, Ags, Ass]
in v rigid-body state of rim: translational velocity of rim center in global coordinates:
v =4y [m/s]
in W rigid-body state of rim: angular velocity vector of rim relative to global
coordinates, represented in global coordinates [rad/s]

mode

job control (must be non-negative), used also in several variants of
ctiComputeForces (not all switches and settings defined by mode are used in

each such variant, but it will never harm if they are set anyway)

...... 0 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have not yet been

accepted by external integrator

...... 1 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have been accepted by

external integrator
...... 2 unconditionally (re-)calculate tire forces
...... 3 calculate steady-state tire forces
...... 4 calculate static tire forces, avgd. road
...... 5 calculate static tire forces, enhanced accuracy, avgd. road
...... 6 calculate static tire forces, time-/location-dependent road
...... 9 reset (prepare for next time loop w/o closing tire handle)

..... k. compute steady states first, if not yet done (only in dynamic case); repeat

this in the first k>0 dynamic steps
....0.. do not extrapolate forces/moments to next FTire update (recommended)

....1.. extrapolate forces/moments to next FTire update (for use if calling solver

is to run in parallel with CTI)

...0... enable multithreading (allow several CTl instances to be run in parallel), if

applicable
...1... disable multithreading
..0.... standard cosimulation mode (calling solver waits for forces)
..1.... only input of rim states (starting all threads)
..2.... only output of rim forces/moments (calling solver waits for forces)
..3.... fast cosimuation mode (calling solver runs in parallel with CTI)

..4.... fast cosimuation mode (calling solver runs in parallel with CTI); with

numerical stabilization using estimated belt rigid-body stiffnesses

10
.0..... standard accuracy in steady-state computation

out f force acting on rim center (point of attack = wheel center) expressed in global

coordinates [N]

out m moment acting on rim center, expressed in global coordinates [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

3.3.9. ctiComputeForcesOnCarBody

Alternative main routine, computing forces and moments on car-body, taking into account the suspension kine-

matics and dynamics.

This routine combines a dynamic MBS suspension model with an FTire model. It requires loading of two data
files: one for the cosin/mbs suspension model (with ctilLoadSuspensionData), another one for FTire (with
ctiLoadTireData). The routine will compute all forces and moments that are transferred from the tire model

via the suspension model to the car-body.
Prototype:

void ctiComputeForcesOnCarBody (int th, double t, double r[], double al[l, double v[], double
w[], double tdr, double tbr, int nin, double in[], int mode, double f[], double m[], int nout,

double out[], intx ier);

Parameters:

in th tire handle

in t simulation time

in T rigid-body state of car-body, using cosin/mbs point of reference: position

in a rigid-body state of car-body, using cosin/mbs point of reference: orientation

in v rigid-body state of car-body, using cosin/mbs point of reference: velocity

in W rigid-body state of car-body, using cosin/mbs point of reference: angular velocity

in tdr drive torque as put out by the drive-train model. Only scalar component in
direction of spindle. The calling program will have to take care that the reaction
torque of tdr is applied to the appropriate part of the drive-train model [Nm]

11

in tbr brake torque as put out by the brake model. Only scalar component in direction
of spindle. tbr is understood to be the maximum absolute brake torque which is
in effect when the wheel is rolling. The tire model will compute and apply the
effective brake torque. This will be negative when the wheel is rolling backward,
and have smaller absolute value when the wheel rotation is locked. The calling
program does not need to compute any reaction torque. In contrast to tdr, CTI

treats tbr as an inner torque, acting between rim and wheel carrier [Nm]

in nin number of additional input signals

in in array of additional input signals, to be used in suspension model (signal names

cti_il, cti_i2, ..)

in mode job control, see ctiComputeForces

out f force acting on car-body (point of attack = wheel center in desgin position),

expressed in global coordinates [N]

out m moment acting on car-body, expressed in global coordinates [Nm]
in nout number of additional output signals
out out array of additional output signals, to be provided by suspension model
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

3.3.10. ctiComputeForcesOnWheelCarrier

Alternative main routine, coupling the tire model to wheel carrier instead of rim. Rim rotation will be integrated
by the tire model.

Prototype:

void ctiComputeForcesOnWheelCarrier (int th, double t, double r[], double a[], double v[],

double w[], double tdr, double tbr, int mode, double f[], double m[], intx ier);

Parameters:
in th tire handle
in t simulation time

12

rigid-body state of wheel carrier: position of wheel carrier in global coordinates

[m]

rigid-body state of wheel carrier: 3x3 orthogonal transformation matrix A from
rim-fixed frame to global coordinates. Vectors in rim-fixed frame are to be

multiplied by a to result in the representation in global coordinates. Example:

0

A-| 1 | = second column of A = direction vector of wheel spinning axis in

0
global coordinates.

Note: A is stored column-wise (like in Matlab and Fortran, but not in C or C++),

A= [A117 A21; A31; A127 A227 A32; A13; A23; A33]

rigid-body state of wheel carrier: translational velocity of wheel carrier in global

coordinates: v = <1 [m/s]

rigid-body state of wheel carrier: angular velocity vector of wheel carrier relative

to global coordinates, represented in global coordinates [rad/s]

tdr

drive torque as put out by the drive-train model. Only scalar component in
direction of spindle. The calling program will have to take care that the reaction

torque of tdr is applied to the appropriate part of the drive-train model [Nm]

tbr

brake torque as put out by the brake model. Only scalar component in direction
of spindle. tbr is understood to be the maximum absolute brake torque which is
in effect when the wheel is rolling. The tire model will compute and apply the
effective brake torque. This will be negative when the wheel is rolling backward,
and have smaller absolute value when the wheel rotation is locked. The calling
program does not need to compute any reaction torque. In contrast to tdr, CTI

treats tbr as an inner torque, acting between rim and wheel carrier [Nm]

mode

job control, see ctiComputeForces

out

force acting on wheel carrier (point of attack = wheel center), expressed in global

coordinates [N]

out

moment acting on wheel carrier, expressed in global coordinates [Nm]

out

ier

error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

13

3.3.11. ctiComputeForcesPosition

Main routine, simplified version: ony rim position, no rim velocity input; transformation matrix replaced by toe,
camber, and wheel roation angle.

Prototype:

void ctiComputeForcesPosition (int th, double t, double r[], double camber, double toe, double

wrot, int mode, double f[], double m[], intx ier);

Parameters:

in th tire handle

in t simulation time [s]

in T rigid-body state of rim: position of rim center in global coordinates [m]

in camber wheel carrier camber angle (rotation angle about wheel-carrier-fixed x-axis) [deg]

in toe wheel carrier toe angle (rotation angle about global z-axis) [deg]

in wrot wheel rotation angle (wheel rotation angle about wheel spin axis) [deg]

in mode job control, see ctiComputeForces

out f force acting on rim center (point of attack = wheel center) expressed in global
coordinates [N]

out m moment acting on rim center, expressed in global coordinates [Nm]

out ier error code
0 ok
1 error occurred (error message was written to log). Simulation should be

aborted

3.3.12. ctiComputeForcesTimeContinuous

Alternative main routine, for calling time-continuous tire models, driven by STI interface.
Prototype:

void ctiComputeForcesTimeContinuous (int th, double t, double r[], double al[l, double v[],

double w[], double s[], int mode, double f[], double m[], double sdot[], intx* ier);

Parameters:

in th tire handle

14

in t simulation time [s]

in T rigid-body state of rim: position

in a rigid-body state of rim: orientation

in v rigid-body state of rim: velocity

in W rigid-body state of rim: angular velocity

in/out s tire state array, to be integrated by calling solver . output in first step, input in all
following steps

in mode job control, see ctiComputeForces

out f force acting on rim; point of attack = wheel center; expressed in global
coordinates [N]

out m moment acting on rim, expressed in global coordinates|[Nm]

out sdot array of tire state derivatives

out ier error code
0 ok
1 error occurred (error message was written to log). Simulation should be

aborted

3.3.13. ctiEnableTimeContinuous

Enable time-continuous call of tire model.

Prototype:

void ctiEnableTimeContinuous (int th, intx nsc);

Parameters:
in th tire handle
out nsc number of time-continuous state variables

3.3.14. ctiEvaluateRoadCourse

Evaluate road course.

Prototype:

void ctiEvaluateRoadCourse (int th, double tp, doublex x, doublex y, doublex z, doublex xp,

15

doublex yp, doublex zp, doublex mu, intx ier);

Parameters:
in th tire handle
in tp travel path for course evaluation [m]
out X course coordinates [m]
out N course coordinates [m]
out z course coordinates [m]
out Xp partial derivatives of course coordinates with respect to travel path [-]
out yp partial derivatives of course coordinates with respect to travel path [-]
out Zp partial derivatives of course coordinates with respect to travel path [-]
out mu friction factor [-]
out ier error code
0 ok
1 error occurred (error message was written to log). Output should not be used

3.3.15. ctiEvaluateRoadHeight

Evaluate road height.
Prototype:

void ctiEvaluateRoadHeight (int th, double t, double x, double y, doublex z, doublex vx, doublex

vy, doublex vz, doublex mu, intx ier);

Parameters:
in th tire handle
in t time for road evaluation [s]
in X locus for road evaluation in global coordinates [m]
in y locus for road evaluation in global coordinates [m]
out z road height [m]
out vx road velocity in global coordinates [m/s]
out vy road velocity in global coordinates [m/s]
out vz road velocity in global coordinates [m/s]
out mu friction factor [-]

16

out

ier

error code
0 ok

1 error occurred (error message was written to log). Output should not be used

3.3.16. ctiFindOutputSignalNumber

Find output signal number, for use inctiGetOutputSignalNumber.

Prototype:

void ctiFindOutputSignalNumber (int th, intx io, chark co);

Parameters:
in th tire handle
out io number of first occurence of signal label in output signal list. 0 if label was not
found
in co signal label to search for, might be abbreviated. First match in label list will be
returned. SeeA.1 for a full list of supported labels.

3.3.17. ctiGetArraySize

Get maximum sizes of FTire arrays

Prototype:

void ctiGetArraySize (int th, int flag, int* size);

Parameters:

th

tire handle

17

flag

kind of array

1 scalar output signals

2 all output signals

3 plot signals in mtl file
4 TYDEX signals

5 basic parameters

6 auxiliary parameters

7 FTire states

8 integer road parameters
9 real road parameters

10 all CTI states (required buffer size for use in ctiWriteStateMemory and

ctiReadStateMemory)

11 subset of CTI states (required buffer size for use in ctiWriteStateMemory and

ctiReadStateMemory)

out

size

size of output array [bytes]

3.3.18. ctiGetContactBodyForces

Get contact body forces and moments.

Prototype:

void ctiGetContactBodyForces (int th, int cbh, double f[], double m[]);

Parameters:
in th tire handle
in cbh contact body handle
out f force acting on road body reference point, expressed in global coordinates [N]
out m moment acting on road body reference point, expressed in global coordinates
[Nm]

18

3.3.19. ctiGetCosinSoftwareVersion

Get cosin software version.
Prototype:
void ctiGetCosinSoftwareVersion (intx rev);

Parameters:

out rev cosin software revision number

3.3.20. ctiGetFileName

Get filenames for current tire handle.
Prototype:
void ctiGetFileName (int th, int kind, char* buffer,

Parameters:

int bufferlen, int* ier);

in th tire handle

19

kind

kind of file

1 tire data in

2 tire data out

3 road data

4 rim data

5 suspension data

6 plot output

7 contact forces

8 geometry output

9 belt states

10 regular grid ground pressure
11 contact patch boundaries
12 tread depth

13 RGR road update data
14 record file

15 rim forces file

16 RGR file

17 input signals file

out

buffer

output buffer to store the current filename (0-terminated string)

bufferlen

length of output buffer

out

ier

0 ok
2 invalid kind flag

3 buffer size to small to store filename

20

3.3.21. ctiGetInstallationInfo

Get details of cosin installation.

Prototype:

void ctiGetInstallationInfo (int item, char* buffer, int bufferlen);

Parameters:

item

kind of info item requested:

0 cosin major version string

1 cosin software revision number
2 computer platform

3 cosin installation path

4 path to cosin binaries

5 path to cosin libraries

6 path to private data folder

out

buffer

queried installation info item (O-terminated string)

bufferlen

length of buffer provided by calling function, to store installation info item

3.3.22. ctiGetLTIMatrix

Get linearized system matrices (aka LTI matrices)

Prototype:

void ctiGetLTIMatrix (int th, int kind, int ns, double mat[], intx ier);

Parameters:

21

in th tire handle
in kind kind of LTI matrix
1 matrix A (system matrix)
2 matrix B (input matrix)
3 matrix C (output matrix)
4 matrix D (feed-through matrix)
in ns number of states as assumed by the calling program
out mat matrix in full and dense storage mode
out ier error code
0 ok

1 matrix can not be used

3.3.23. ctiGetNodePositions

Get surface node positions.

Prototype:

void ctiGetNodePositions

rnc[], intx ier);

(int th, double sx, double sy, double rnO[], double rnr[], double

Parameters:

in th tire handle

in sx relative circumferential path coordinate, between 0 and 1

in sy relative lateral path co-ordinate, between 0 and 1 (O=midpoint of left rim flange
circle, 1=midpoint of right rim flange circle), or between 10 and 11 (10=left rim
flange, 11=right rim flange)

out rn0 surface node position in global coordinates

out rnr surface node position in rim-fixed frame

out rnc surface node position in TYDEX C frame

22

out ier error code
0 ok

1 surface node position could not be calculated

3.3.24. ctiGetNodePositionsWithAttributes

Get surface node positions and additional surface-related attributes.
Prototype:

void ctiGetNodePositionsWithAttributes (int th, double sx, double sy, double rnO[], double

ronr[], double rnc[], int natt, double att[], intx* ier);

Parameters:

in th tire handle

in sx relative circumferential path coordinate, between 0 and 1

in sy relative lateral path co-ordinate, between 0.0 and 1.0:
0.0 = midpoint of left rim flange circle
1.0 = midpoint of right rim flange circle
or between 10.0 and 11.0:
10.0 = left rim flange
11.0 = right rim flange

out rn0 surface node position in global coordinates

out rnr surface node position in rim-fixed frame

out rnc surface node position in TYDEX C frame

in natt size (maximum number of components) of array att as provided by calling
program

23

out att additional interpolated surface attribute values (provided as many as available,

but not more than natt:

1 normal deflections of tread blocks [m]

2 longitudinal (=tangential) deflections of tread blocks [m]
3 lateral deflections of tread blocks [m]

4 tread height [m]

5 surface temperature [degC]

6 stick(0) / slip(1) states of tread blocks

out ier error code
0 ok

1 surface node position could not be calculated

3.3.25. ctiGetNumberContinuousStates

Get number of time-continuous states (not supported in client/server environment).
Prototype:

void ctiGetNumberContinuousStates (int th, int* nsc);

Parameters:
in th tire handle
out nsc number of time-continuous state variables

3.3.26. ctiGetOutputSignallabel

Get output signal full label from number (as obtained by ctiFindOutputSignalNumber).
Prototype:
void ctiGetOutputSignallLabel (int th, int ns, char* buffer, int bufferlen, intx ier);

Parameters:

24

in th tire handle

in ns signal number as obtained by ctiFindOutputSignalNumber

out buffer output buffer to store the output siganl label (0-terminated string)
in bufferlen length of output buffer

out ier

0 ok

3 buffer size to small to store label

3.3.27. ctiGetOutputSignalNumber

Get single output signal.

Prototype:

void ctiGetOutputSignalNumber (int th, doublex os, int ns);

Parameters:
in th tire handle
out os value of output signal; = 1e60 if label not found in signal list
in ns signal number as obtained by ctiFindOutputSignalNumber

3.3.28. ctiGetOutputSignals

Provide output signal arrays for postprocessing in calling environment

Prototype:

void ctiGetOutputSignals (int th, int no, double o[]);

Parameters:
in th tire handle
in no size of o array, as dimensioned in calling program
out o tire model-specific output signal array. For a list of output signals see
ftire_model pdf. At most, the first no components will be written to o.

25

3.3.29. ctiGetPlotSignal

Get single plot output signal value.

Prototype:

void ctiGetPlotSignal (int th, doublex os, charx label);

Parameters:
in th tire handle
out os value of output signal. (>= 1e60, if label not found in signal list)
in label label or label-substring of output signal.

Notes:

»curvature” would be a valid label-substring for, footprint center line curva-
ture, 1/m". The substring may occur both at the beginning or somewhere

inside the label

if label-substring is not unique, the first matching label in the list of labels

(which is not lexicographically sorted like the table below) will be used
output signals availability depends on output request and active sub-model

the position of the labels in the table below cannot be used as a signal number

inctiGetOutputSignalNumber

since this routine repeatedly scans a long list of labels of available output
signals, it might slow down program execution. A more efficient and recom-
mended way of retrieving output signal values is the combination of the two

API functionsctiFindOutputSignallNumber andctiGetOutputSignalNumber

plot signals under consideration here are only available if an additional output
(plot) file is written, containing the requested signal. This is in contrast to sig-
nals ordered byctiFindOutputSignalNumber andctiGetOutputSignalNumber,

which are unconditionally available

List of supported labels:

actual pressure, bar

air velocity variation, m/s

air-vibr-induced rim force x, N

air-vibr-induced rim force y, N

air-vibr-induced rim force z, N

aligning torque (C-axis), Nm

aligning torque (H-axis), Nm

aligning torque (I1SO), Nm

26

aligning torque (W-axis), Nm

aligning torque FP (W-axis), Nm

ambient temperature, degC

belt extension, %

belt structure forces RTF, -

brake force, N

brake slip, %

camber angle, deg

contact processor RTF, -

cornering force, N

drag force, N

footprint area, m"2

footprint center line curvature, 1/m

footprint center line torsion, deg

footprint length, mm

footprint width, mm

fore-aft force (C-axis), N

fore-aft force (H-axis), N

fore-aft force (1SO), N

fore-aft force (W-axis), N

fore-aft force FP (W-axis), N

geom. long. footprint shift, mm

global friction coefficient, -

global integration step size, ms

ground pressure RMS, MPa

gyroscopic align. torque, Nm

gyroscopic overt. torque, Nm

implicit integration solver RTF, -

inflation pressure, bar

interior volume, m~3

lat. displacement, mm

lat. footprint shift, mm

lat. road surface displ., mm

lat. shift of Fz point of attack, mm

loaded radius, mm

local integration step size, ms

long. displacement, mm

long. footprint shift, mm

long. road surface displ., mm

long. shift of Fz point of attack, mm

mass variation near footprint, %

max. ground pressure, MPa

max. lat. elast. left rim displ., mm

max. lat. elast. right rim displ., mm

max. lat. plast. left rim def., mm

max. lat. plast. right rim def., mm

max. rad. elast. left rim displ., mm

max. rad. elast. right rim displ., mm

max. rad. plast. left rim def., mm

max. rad. plast. right rim def., mm

max. radial belt displ., mm

max. rim/belt intrusion, mm

max. rim/road intrusion, mm

max. side-wall/road intrusion, mm

max. sliding velocity, m/s

max. tread deflection, mm

mean circumferential air vel., m/s

mean contact patch temperature, degC

mean ground pressure, MPa

mean sliding velocity, m/s

mean tire torsion about spin axis, deg

mean tread temperature, degC

mean tread wear at y= 4.7mm, mm

mean tread wear at y= -4.7mm, mm

mean tread wear at y= 14.1Imm, mm

mean tread wear at y= 23.5mm, mm

27

mean tread wear at y= 32.9mm, mm

mean tread wear at y= 42.3mm, mm

mean tread wear at y= 51.7mm, mm

mean tread wear at y= 61.1mm, mm

mean tread wear at y= 70.5mm, mm

mean tread wear at y= 80.0mm, mm

mean tread wear at y= 89.4mm, mm

mean tread wear at y= -14.1mm, mm

mean tread wear at y= -23.5mm, mm

mean tread wear at y= -32.9mm, mm

mean tread wear at y= -42.3mm, mm

mean tread wear at y= -51.7mm, mm

mean tread wear at y=-61.1mm, mm

mean tread wear at y= -70.5mm, mm

mean tread wear at y= -80.0mm, mm

mean tread wear at y= -89.4mm, mm

mean tread wear rate, mm/s

mean wear rate

at y= 4.7mm, mm/s

mean wear rate at y= -4.7mm, mm/s

mean wear rate

at y= 14.Imm, mm/s

mean wear

rate

at y= 23.5mm, mm/s

mean wear rate

at y= 32.9mm, mm/s

mean wear

rate

at y= 42.3mm, mm/s

mean wear rate

at y=51.7mm, mm/s

mean wear

rate

at y= 61.1mm, mm/s

mean wear rate

at y= 70.5mm, mm/s

mean wear

rate

at y= 80.0mm, mm/s

mean wear rate

at y= 89.4mm, mm/s

mean wear

rate

at y=-14.1mm, mm/s

mean wear rate

at y=-23.5mm, mm/s

mean wear

rate

at y=-32.9mm, mm/s

mean wear rate

at y= -42.3mm, mm/s

mean wear

rate

at y=-51.7mm, mm/s

mean wear rate

at y=-61.1mm, mm/s

mean wear

rate

at y=-70.5mm, mm/s

mean wear rate

at y= -80.0mm, mm/s

mean wear

rate

at y=-89.4mm, mm/s

model level, -

normalized wheel rotation angle, deg

number of elements in road contact, -

on cleat, -

overturning torque (C-axis), Nm

overturning torque (H-axis), Nm

overturning torque (ISO), Nm

overturning torque (W-axis), Nm

overturning torque FP (W-axis), Nm

perc. of contacts in itv. v0/p0, %

perc. of contacts in itv. vO/pl, %

perc. of contacts

in itv. v0/p2, %

perc. of contacts

in itv. v0/p3, %

perc. of contacts

in itv. v1/p0, %

perc. of contacts

initv. v1/pl, %

perc. of contacts

initv. v1/p2, %

perc. of contacts

nitv. v1/p3, %

perc. of contacts

in itv. v2/p0, %

perc. of contacts

nitv. v2/pl, %

perc. of contacts

initv. v2/p2, %

perc. of contacts

nitv. v2/p3, %

perc. of contacts

in itv. v3/p0, %

perc. of contacts

in itv. v3/pl, %

perc. of contacts

in itv. v3/p2, %

perc. of contacts

initv. v3/p3, %

perc. of contacts

in itv. v4/p0, %

perc. of contacts

in itv. v4/pl, %

perc. of contacts

initv. v4/p2, %

perc. of contacts

n itv. v4/p3, %

28

ply-steer moment, Nm

pneumatic scrub, mm

pneumatic trail, mm

power loss in plies, kW

power loss in tread, kW

power loss through damping, kW

power loss through road friction, kW

pressure variation, bar

probe block 1 lat. defl., mm

probe block 1 long. defl., mm

probe block 1 normal defl.,, mm

probe block 1 temp., degC

probe block 1 tread depth, mm

probe block 2 lat. defl., mm

probe block 2 long. defl., mm

probe block 2 normal defl., mm

probe block 2 temp., degC

probe block 2 tread depth, mm

probe block 3 lat. defl., mm

probe block 3 long. defl., mm

probe block 3 normal defl., mm

probe block 3 temp., degC

probe block 3 tread depth, mm

probe block 4 lat. defl., mm

probe block 4 long. defl., mm

probe block 4 normal defl., mm

probe block 4 temp., degC

probe block 4 tread depth, mm

probe block 5 lat. defl., mm

probe block 5 long. defl., mm

probe block 5 normal defl., mm

probe block 5 temp., degC

probe block 5 tread depth, mm

probe block 6 lat. defl., mm

probe block 6 long. defl., mm

probe block 6 normal defl., mm

probe block 6 temp., degC

probe block 6 tread depth, mm

probe block frict. coeff., -

probe block sliding vel., m/s

probe segment inclination, deg

probe segment lat. defl., mm

probe segment lateral curvature, 1/m

probe segment left rim force x, N

probe segment left rim force y, N

probe segment left rim force z, N

probe segment mean tread temp., degC

probe segment radial defl., mm

probe segment right rim force x, N

probe segment right rim force y, N

probe segment right rim force z, N

probe segment tang. defl., mm

rel. size of rim flange to belt contact area, %

rel. size of sliding area, %

rim camber angle, deg

rim rotation angle, deg

rim toe angle, deg

rim/road contact force x, N

rim/road contact force y, N

rim/road contact force z, N

road height at footprint center, m

road surface temperature, degC

rolling loss, N

rolling resistance coefficient, -

rolling torque (C-axis), Nm

rolling torque (H-axis), Nm

29

rolling torque (ISO), Nm

rolling torque (W-axis), Nm

rolling torque FP (W-axis), Nm

side force (C-axis), N

side force (H-axis), N

side force (ISO), N

side force (W-axis), N

side force FP (W-axis), N

sliding velocity RMS, m/s

slip angle, deg

steering angle, deg

time, s

tire deflection (C-axis), mm

tire deflection (H-axis), mm

tire deflection (W-axis), mm

tire deflection velocity, m/s

tire deflection, mm

tire mass, kg

tire structure temperature, degC

tire/rim slip, deg

toe angle, deg

total RTF, -

total power loss, kW

traveled distance, m

tread depth, mm

tread wear rate non-uniformity, mm/s

velocity (C-axis), m/s

velocity (W-axis), m/s

velocity, m/s

weight first ground pressure value, -

weight second ground pressure value, -

weight third ground pressure value, -

wheel angular acceleration, rad/s"2

wheel angular speed, rad/s

wheel lateral velocity, m/s

wheel load (C-axis), N

wheel load (H-axis), N

wheel load (I1SO), N

wheel load (W-axis), N

wheel load FP (W-axis), N

wheel load w/o weight (C-axis), N

wheel longitudinal velocity, m/s

wheel rotation angle, deg

wheel slip, %

wheel vertical velocity, m/s

x angular velocity rim, rad/s

x-position footprint center, m

x-position rim center, m

X-position rim-center, m

x-position road ref., m

x-shift center of gravity, mm

x-velocity rim center, m/s

x-velocity rim-center, m/s

x-velocity road, m/s

y angular velocity rim, rad/s

y-position footprint center, m

y-position rim center, m

y-position rim-center, m

y-position road ref., m

y-shift center of gravity, mm

y-velocity rim center, m/s

y-velocity rim-center, m/s

y-velocity road, m/s

z angular velocity rim, rad/s

z-position rim center, m

z-position rim-center, m

30

z-position road ref., m z-shift center of gravity, mm

z-velocity rim center, m/s z-velocity rim-center, m/s

z-velocity road, m/s

3.3.30. ctiGetPlotSignals

Get all current plot signal values.
Prototype:

void ctiGetPlotSignals (int th, int nop, doublex op);

Parameters:
in th tire handle
in/out nop on input: maximum size of op, as dimensioned in calling program
on output: number of output signal values, and used size of op
out op plot signal array. At most, first nop components will be written to op.

3.3.31. ctiGetRimForces

Get linear distributed rim flange forces.
Prototype:

void ctiGetRimForces (int th, int n, double r10[][3], double f10[][3], double rrO[][3], double

£fro[1031);

Parameters:
in th tire handle
in n number of equally spaced probe nodes
out rl0 position of left rim flange probe nodes, expressed in global coordinates [m]
out £10 linear distr. rim flange forces in left probe nodes [N]
out rr0 position of right rim flange probe nodes, expressed in global coordinates [m]
out fro linear distr. rim flange forces in right probe nodes [N]

3.3.32. ctiGetRimProperties

Get some important rim properties (properties eventually needed by calling program).

31

Prototype:

void ctiGetRimProperties (int th, doublex rr, doublex iryy, intx ier);

Parameters:
in th tire handle
out rr rim flange radius (= rim well radius + rim flange height) [m]
out iryy rim moment of inertia about spin axis, including fixed tire share [kgm~2]
out ier error code

0 ok

1 tire data can not be used

3.3.33. ctiGetRimRotationStates

Get rim rotation states.
Prototype:

void ctiGetRimRotationStates (int th, doublex a, doublex an, doublex w);

Parameters:
in th tire handle
out a absolute rim rotation angle [rad]
out an rim rotation angle, normalized to interval [0,2pi] [rad]
out W rim angular velocity [rad/s]

3.3.34. ctiGetRoadDependFiles

Get road dependent files.
Prototype:

void ctiGetRoadDependFiles (char* road_file, int id, int* id_max, char* depend_file, int df_size,

char* desc, int d_size, int* ier);

Parameters:

in road_file road file

32

in id id < 0: set only id _max
id in {0,....id_max - 1}: set only depend _file and description strings with id-th
dependent file info

out id_max number of dependent files

out depend_file | dependent file string

in df _size size of dependent file string

out desc description string

in d_size size of description string

out ier error code
0 ok

9 road file name is too long

3.3.35. ctiGetRoadForces

Get road forces and moments.

Prototype:

void ctiGetRoadForces (int th, double f[], double m[]);

Parameters:
in th tire handle
out £ force acting on road reference point expressed in global coordinates [N]
out m torque acting on road reference point, expressed in global coordinates [Nm]

3.3.36. ctiGetRoadParameters

Get current road parameters; see also ctiSetRoadParameters().

Prototype:

void ctiGetRoadParameters (int th, int pri[], double prd[]);

Parameters:

tire handle

33

out pri integer road parameters.
Note: Necessary array size to be queried by ctiGetArraySize (8, &npri)
out prd double road parameters

Note: Necessary array size to be queried by ctiGetArraySize (9, &nprd)

3.3.37. ctiGetRoadProperties

Get current road properties.

Prototype:

void ctiGetRoadProperties (int th, int nrp, double rp[]l);

Parameters:
in th tire handle
in nrp number of requested road properties.

34

out rp road properties array. At most, the first nrp components will be written to rp.

Components:
0 smin [m]
1 smax [m]
2 dmin [m]
3 dmax [m]
4 ds [m]

5 dd [m]

6 ns [

7 nd []

8 length center-line [m]
9 xmin [m]
10 xmax [m]
11 ymin [m]
12 ymax [m]

13 encryption mode (1=road file is encrypted)

3.3.38. ctiGetRoadSize

Get road size.
Prototype:
void ctiGetRoadSize (int th, double rs[]);

Parameters:

in th tire handle

35

out

rs

road sizes array. Components:
0 smin [m]

1 smax [m]

2 dmin [m]

3 dmax [m]

4 ds [m]

5 dd [m]

6 ns [

7 nd []

8 length center-line [m]

3.3.39. ctiGetStatus

Get CTI interface status.

Prototype:

void ctiGetStatus (int* status);

Parameters:

out

status

current CTI interface status. Values:

0 CTI not active (not yet initialized or closed for all instances)
1 CTl initializing, calling solver not yet set

2 CTl initialized, but calling solver not yet set

3 CTl initialized, calling solver set

4 CTI closing

36

3.3.40. ctiGetStepSize

Get last integration step size.
Prototype:

void ctiGetStepSize (int th, doublex h, doublex t);

Parameters:
in th tire handle
out h last integration step size [s]
out t last simulation time [s]

3.3.41. ctiGetTireDependFiles

Get tire dependent files.
Search order for a dependent file with a relative file name:
1. Folder containing the tire file
2. <private-working-folder> /ftire/param folder
3. <cosin-install-folder> /ftire/param folder
4. current working folder
Prototype:

void ctiGetTireDependFiles (char* tire_file, int id, int* id_max, char* depend_file, int df_size,

char* desc, int d_size, int* ier);

Parameters:

in tire_file tire file

in id id < 0: set only id _max
id in {0,...,id _max - 1}: set only depend _file and description strings with id-th
dependent file info

out id_max number of dependent files

out depend_file | dependent file string (empty if file is not found)

in df_size size of dependent file string

out desc description string

in d_size size of description string

37

out

ier

error code

0 ok

1 invalid id

101 tread pattern image file not found
102 rim data file not found

103 sound file not found

104 rim CAD file not found

105 sidewall texture file not found
106 car-body CAD file not found

107 animation settings file not found

Demo:

<cosin-install-folder> /interface/cti/ctiDependFilesDemo.c

3.3.42. ctiGetTireDimensionData

Get tire dimension (and more) double data.

Prototype:

void ctiGetTireDimensionData (int th, int item, double* value);

Parameters:

th

tire handle

38

in item item to be provided:

1 section width [mm]

2 aspect ratio [%]

3 rim diameter [inch]

4 rim width [inch]

5 load index [LI]

6 numerically coded speed symbol [SSY]

7 tire load class [TLC]

8 reference inflation pressure [bar]

9 second inflation pressure [bar]

10 actual inflation pressure [bar]

11 LI load [kN]

12 rated maximum velocity [m/s]

13 estimated maximum translational in-plane K&C compliance in
look-up-table-based vehicle models [mm/kN]

14 estimated maximum rotational in-plane K&C compliance in
look-up-table-based vehicle models [deg/Nm]

15 estimated maximum translational out-of-plane K&C compliance in
look-up-table-based vehicle models [mm/kN]

16 estimated maximum rotational out-of-plane K&C compliance in
look-up-table-based vehicle models [deg/Nm]

out value item value (0 if not defined or unknown)

3.3.43. ctiGetTireDimensionStringData

Get tire dimension string data.

Prototype:

39

void ctiGetTireDimensionStringData (int th, int item, char* value, int size);

Parameters:
in th tire handle
in item item to be provided:
1 manufacturer
2 brand
3 ETRTO size string
out value item value (= unknown if not defined or unknown)
in size size, in bytes, of the array referenced by value

3.3.44. ctiGetTireHandle

Get tire handle from tire instance.
Prototype:

void ctiGetTireHandle (int ti, intx th);

Parameters:
in ti tire instance
out th tire handle; -1, if ti is not yet used

3.3.45. ctiGetTirelInstance

Get tire instance from tire handle.
Prototype:

void ctiGetTireInstance (int th, int* ti);

Parameters:
in th tire handle
out ti tire instance; -1, if too many tire instances are defined

40

3.3.46. ctiGetTireKeyData

Get key tire data (data needed by calling program).
Prototype:

void ctiGetTireKeyData (int th, doublex rmax, doublex rdyn, doublex rloaded, doublex mfix, doublex
iyfix, doublex izfix, doublex mfree, doublex iyfree, doublex izfree, doublex crad, doublex

crad2, intx ier);

Parameters:

in th tire handle

out rmax unloaded tire radius at zero camber angle and zero speed [m]

out rdyn dynamic rolling radius at zero speed and half LI load [m]

out rloaded loaded radius at zero speed and half LI load [m]

out mfix share of tire mass which is considered 'fixed to the rim’, and which needs to be
taken into account in the rigid body 'rim" [kg]

out iyfix share of tire moment of inertia about spin axis which is considered 'fixed to the
rim’, and which needs to be taken into account in the rigid body 'rim’ [kgm~2]

out izfix share of tire moment of inertia about verticall axis which is considered 'fixed to
the rim’, and which needs to be taken into account in the rigid body 'rim" (for
symmetry reasons, ifrxx = ifrzz is assumed) [kgm~2]

out mfree share of tire mass which is considered 'free’ [kg]

out iyfree share of tire moment of inertia about spin axis which is considered 'free’ [kgm2]

out izfree share of tire moment of inertia about verticall axis which is considered 'free’ (for
symmetry reasons, ifxx = ifzz is assumed) [kgm"2]

out crad first coefficient of a quadratic approximation of the tire radial stiffness
characteristic at zero camber angle, zero wheel speed, flat surface, and nominal
inflation pressure: Fz = crxd + dr2xd"2 - mxg (d global tire deflection in [m], Fz
static wheel load in [N]. cr is given in [N/m], cr2 in [N/m~2]

out crad2 second coefficient of a quadratic approximation of the tire radial stiffness
characteristic at zero camber angle, zero wheel speed, flat surface, and nominal
inflation pressure: Fz = crxd + dr2xd"2 - mxg (d global tire deflection in [m], Fz
static wheel load in [N]. cr is given in [N/m], cr2 in [N/m~2]

41

out

ier

error code

0 ok

1 tire data can not be used

3.3.47. ctiGetTireModelType

Get tire model type.

Prototype:

void ctiGetTireModelType (int th, intx tm);

Parameters:

th

tire handle

42

out tm tire model type:

-3 type ecognized, but data file not loadable
-2 type recognized, but respective model not licensed
-1 type not (yet) recognized

0 HTire / Magic Formula, Version M.

4 HTire / Magic Formula, Version S.

6 HTire / Magic Formula, Version 96

7 HTire / Magic Formula, Version H.

8 HTire / Magic Formula, Version 89

9 HTire / Magic Formula, Version 94

10 HTire / Magic Formula, Version M./94
11 HTire / Magic Formula, Version BS./96
12 HTire / Magic Formula, Version 2002
20 FETire

21 FTire

3.3.48. ctiGetTireProperties

Get some important tire properties needed by the calling program (reduced version of ctiGetTireKeyData).
Prototype:

void ctiGetTireProperties (int th, doublex rmax, doublex rdyn, doublex mfix, doublex iyfix,

doublex izfix, doublex crad, doublex crad2, int* ier);

Parameters:
in th tire handle
out rmax unloaded tire radius at zero camber angle and zero speed [m]
out rdyn dynamic rolling radius at zero speed and half LI load [m]

43

out

mfix

share of tire mass which is considered 'fixed to the rim’, and which needs to be

taken into account in the rigid body 'rim" [kg]

out

iyfix

share of tire moment of inertia about spin axis which is considered 'fixed to the

rim’, and which needs to be taken into account in the rigid body 'rim’ [kgm~2]

out

izfix

share of tire moment of inertia about verticall axis which is considered 'fixed to
the rim’, and which needs to be taken into account in the rigid body 'rim" (for

symmetry reasons, IRXX = irzz is assumed) [kgm"2]

out

crad

first coefficient of a quadratic approximation of the tire radial stiffness
characteristic at zero camber angle, zero wheel speed, flat surface, and nominal
inflation pressure: Fz = crxd + dr2xd"2 - mxg (d global tire deflection in [m], Fz

static wheel load in [N]. cr is given in [N/m], cr2 in [N/m~2]

out

crad2

second coefficient of a quadratic approximation of the tire radial stiffness
characteristic at zero camber angle, zero wheel speed, flat surface, and nominal
inflation pressure: Fz = crxd + dr2xd"2 - mxg (d global tire deflection in [m], Fz

static wheel load in [N]. cr is given in [N/m], cr2 in [N/m~2]

out

ier

error code

0 ok

1 tire data can not be used

3.3.49. ctiGetTreadStates

Get tread states in footprint.

Prototype:

void ctiGetTreadStates (int th, double xt, double yt, int type, doublex ft, int* ier);

Parameters:
in th tire handle
in xt coordinates in contact frame of tread element where state is to be put out [mm]
in yt coordinates in contact frame of tread element where state is to be put out [mm]

44

in type type of state to be put out:

1 ground pressure distribution
2 long. shear stress distribution
3 lat. shear stress distribution
4 friction coeff. distribution

5 sliding velocity

6 temperature distribution

7 tread depth

8 power loss density in tread

9 tread wear rate

out ft interpolated value of state
out ier error code
0 ok

1 state could not be interpolated

3.3.50. ctiGetTydexSignals

TYDEX signal output.
Prototype:
void ctiGetTydexSignals (int th, int not, doublex ot);

Parameters:

in th tire handle

45

not

coded number of output signals:

Oxxxx using TYDEX-conform output signals. xxxx is size of ot array, as
dimensioned in calling program. As an example, use not=20 to store the

first 20 TYDEX-conform output signals in the ot array

Ixxxx using TYDEX-subset output signals. xxxx is size of ot array as
dimensioned in calling program. As an example, use not=10020 to store

the first 20 TYDEX-subset output signals signals in the ot array.

2xxxx using TYDEX-subset output signals, compatible with dSPACE ASM
solver. xxxx is size of ot array as dimensioned in calling program (at most

the first 14 components will be set with signal values).

3xxxx using TYDEX-subset output signals, compatible with dSPACE SCALEXIO
solver. xxxx is size of ot array as dimensioned in calling program (at most

the first 14 components will be set with signal values).

out

ot

TYDEX output signal array. First 25 signals coincide with the standardized STI
VARINF output signals. For a list of TYDEX-conform output signals see
ftire_model pdf. For a list of TYDEX-subset output signals see A.2. At most,

the first not components will be written to ot.

3.3.51. ctiInit

Initialize CTI. Initializes the CTl interface and sets calling application specific attributes:

e message line length

3rd-party license acceptance

required license feature

program options source

'kill solver on escape’ property

depending on application and/or calling solver environment.

Repeated calling of ctiInit is not effective until next call of ctiClose.

Prototype:

void ctilnit (CTIINIT#* param);

46

Parameters:

in param parameter structure of typedef CTIINIT

Note: use CTIINIT_INITIALIZER to initalize this structure.

Example Code:

#include "cti.h"
void myMessageFunc (int level , charx message) {

printf ("%s", message);

int fool (void) {
/* default initialization x/
CTHNIT p = CTIINIT INITIALIZER;
ctilnit (&p);

int foo2 (void) {
/* initialization with own message function x/
CTHNIT p = CTIHNIT INITIALIZER;
p.message func = myMessageFunc;

ctilnit (&p);

int foo3 (void) {
/* general initialization x/
CTHNIT p = CTIHNIT INITIALIZER;
p.message func = myMessageFunc;
snprintf (p.output folder, sizeof(p.output folder), "/tmp/myOutputFolder");
snprintf (p.output prefix, sizeof(p.output prefix), "myPrefix");
p.calling solver = 99;
p.mt_call flag = 1;
ctilnit (&p);

3.3.52. ctiKillSolverOnEsc

Kill solver on Esc. Abort calling solver, if escape key in cosin’s animation window is hit.

47

Prototype:
void ctiKillSolverOnEsc (void);
Parameters:

none

3.3.53. ctilinearize

Linearize system.
Prototype:

void ctilinearize (int th, double t, double r[], double a[], double v[], double w[], doublexfrmax,

int* n, int job, double sli[], double slidot[], double f[], double m[], int* ier);

Parameters:

in th tire handle

in t simulation time

in T rigid-body state of rim, used as operating point for linearization in first call, and
as input to linearized system in subsequent calls

in a rigid-body state of rim, used as operating point for linearization in first call, and
as input to linearized system in subsequent calls

in v rigid-body state of rim, used as operating point for linearization in first call, and
as input to linearized system in subsequent calls

in W rigid-body state of rim, used as operating point for linearization in first call, and
as input to linearized system in subsequent calls

in/out frmax on input: maximum natural frequency taken into account for linearized system.
Not used if less or equal to zero on output: actual maximum natural frequency of
linearized system [Hz]

in/out n on input: desired size (number of state variables) of linearized system. Not used
if less or equal to zero. Arrays sli and slidot must be dimensioned in calling
program at least with size n on output: actual size of linearized system

48

in job job control

...0 compute derivatives

...1 compute output signals

...2 compute both

..0. refresh linearization only if system size has changed
..1. unconditionally refresh linearization

.0.. angle input: Bryant angles

.1.. angle input: finite rotation about global x/y/z axis
0... take damping into account

1... neglect damping

in sli linearized state vector (to be integrated outside CTI)
out slidot time derivative of linearized state vector (to be integrated outside CTI)
out f0 linearized force acting on rim center (point of attack = wheel center) expressed in

global coordinates [N]

out m linearized moment acting on rim center, expressed in global coordinates [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Linearized system should

not be used

3.3.54. ctilinearizeWheelCarrier

Alternative linearize system.
Prototype:

void ctilinearizeWheelCarrier (int th, double t, double r[], double al[], double r[], double
w[], doublexfrmax, int* n, int job, double sli[], double slidot[], double f[], double m[], intx

ier);

Parameters:

49

in th tire handle

in t simulation time

in T rigid-body state of wheel carrier, used as operating point for linearization in first
call, and as input to linearized system in subsequent calls

in a rigid-body state of wheel carrier, used as operating point for linearization in first
call, and as input to linearized system in subsequent calls

in T rigid-body state of wheel carrier, used as operating point for linearization in first
call, and as input to linearized system in subsequent calls

in W rigid-body state of wheel carrier, used as operating point for linearization in first
call, and as input to linearized system in subsequent calls

in/out frmax on input: maximum natural frequency taken into account for linearized system.
Not used if less or equal to zero on output: actual maximum natural frequency of
linearized system [Hz]

in/out n on input: desired size (number of state variables) of linearized system. Not used
if less or equal to zero. Arrays sli and slidot must be dimensioned in calling
program at least with size n on output: actual size of linearized system

in job job control. Values:
...0 compute derivatives
..1 compute output signals
...2 compute both
..0. refresh linearization only if system size has changed
..1. unconditionally refresh linearization
.0.. angle input: Bryant angles
.1.. angle input: finite rotation about global x/y/z axis
0... take damping into account
1... neglect damping

in sli linearized state vector (to be integrated outside CTI)

out slidot time derivative of linearized state vector (to be integrated outside CTI)

50

out f linearized force acting on wheel carrier (point of attack = wheel center) expressed
in global coordinates [N]
out m linearized moment acting on wheel carrier, expressed in global coordinates [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Linearized system should

not be used

3.3.55. ctiloadControlData

Select and load a cti file in cosin/io format, containing CTI control info for a single tire instance like

tire data file

road data or road data file

initial conditions and settings

mode control like speed-mode, output level, output files etc.

animation settings

source signal definitions for variable operating conditions

post-processing actions like cosin/ip output etc.

Example cti files (with file name extension .cti) are provided in directory ftire/cti of any private working

directory generated with cosin version 2019-1 or later. Cti files can be opened, inspected, and edited with

cosin/tools.

There are several ways to specify and use a cti file:

1. call only ctiLoadTireData with a tir file, for each tire of the vehicle model, together with a link inside the

tir file specifying a cti file. This approach can be used in all 3rd-party environments even with interfaces

developed prior to 2019-1, but is less favorable since certain simulation control is mixed with model data;

call only ctiLoadTireData with a cti file, for each tire of the vehicle model, together with a link inside

the cti file specifying the tir file. This approach is less recommended and only implemented to facilitate

usage of cti files within old 3rd-party interfaces. However, it requires that the 3rd-party interface accepts

file name extension .cti for tire data files;

51

3. call ctiLoadTireData and then ctiloadControlData for each tire of the vehicle model. Any link to a

tire data file in the cti file is ignored in this use mode;

4. call only ctiLoadControlData, for each tire of the vehicle model, together with a link inside the cti file
specifying a tir file and optionally a road file. This approach saves extra calls to ctiLoadTireData and
optionally ctiLoadRoadData (which are performed internally now). In this use mode, a cti file might hold
the complete relevant model and simulation info for single tire. Moreover, the contents of a cti file optionally
can discriminate between different tire instances, by assigning individual data items to specific wheels of the
vehicle. Thus, it is possible to use the same cti file for all tires of a vehicle, but nonetheles specify different

data files, different operating conditions control, and individiual post-processing procedures;

5. call only ctiLoadList, which in turn internally calls ctiLoadControlDataand thus also ctiLoadTireData
and ctiLoadRoadData for all wheels in a list, using this same cti file. In this preferred use mode, a single

file and a single call to a respective load function can be used to specify the complete CTl-related info.
ctiLoadControlData is available with cosin version 2019-1 or later.
Prototype:

void ctiloadControlData (int th, int* ier, char* file);

Parameters:

in th tire handle

out ier error code
0 ok
1 error occurred when loading data file (error message was written to log).

Simulation should be aborted

2 no license available
8 cti file name not specified
9 cti file name is too long

in file cti file name (format see cosin/iodocument chapter)

3.3.56. ctiloadList

Select and load a cti file in cosin/io format, containing complete CTI control info for all tire instances of a given list.

For details about contents and usage of cti files, see ctiLoadControlData. No extra calls to ctiLoadTireData,

52

ctiLoadRoadData, or ctiLoadControlData are required when using ctiLoadList.

ctiloadList is available with cosin version 2019-1 or later.

Prototype:

void ctiloadList (int nthl, int thl[], int* ier, char* file);

Parameters:
in nthl number of tire instances for which CTI data are to be loaded
in thl list of tire handles for which CTI data are to be loaded
out ier error code
0 ok
1 error occurred when loading data file (error message was written to log).
Simulation should be aborted
2 no license available
8 cti file name not specified
9 cti file name is too long
in file cti file name (format see cosin/io document chapter)

3.3.57. ctiloadRimData

Select and load rim data file.

This function can only be called after the tire file is loaded for the tire handle. If the rim data file exists, the

detailed rim model for the respective tire instance will ber activated.

Prototype:

void ctilLoadRimData (int th, intx ier, charx file);

Parameters:

th

tire handle

53

out ier error code
0 ok

1 error occurred when loading data file (error message was written to log).

Simulation should be aborted
2 no license available
8 rim data file name not specified

9 rim data file name is too long

in file rim data file name

3.3.58. ctilLoadRimModel

Select and load rim model library.

This function can only be called after the tire file is loaded for the tire handle. If the rim model library could be

loaded successfully, the user-defined rim model for the respective tire instance is activated.
Prototype:

void ctiloadRimModel (int th, int* ier, charx riml, charx rimf);

Parameters:

in th tire handle

out ier error code
0 ok
1 error occurred when loading rim library (error message was written to log).

Simulation should be aborted

8 riml OR rimf file name not specified
9 riml OR rimf file name is too long

in riml name of dynamic library, observing respective OS conventions

in rimf name of urim.c-compatible module in dynamic library, observing respective OS
conventions

54

3.3.59. ctiloadRoadData

Select and load road data file.

Prototype:

void ctilLoadRoadData (int th, intx ier, charx file);

Parameters:
in th tire handle
out ier error code
0 ok
1 error occurred when loading data file (error message was written to log).
Simulation should be aborted
2 no license available
8 road data file name not specified
9 road data file name is too long
in file road data file name. Use function-pointer-called user-defined road model, if file
name is preceded by urm:
Note:

If called for road evaluations (e.g. with ctiEvaluateRoadHeight) not related to a specific tire, please use a tire

handle not used otherwise.

3.3.60. ctiloadRoadModel

Select and load road model library.

Prototype:

void ctilLoadRoadModel (int th, int* ier, charx roadl, charx roadf);

Parameters:

th

tire handle

55

out

ier

error code
0 ok

1 error occurred when loading road library (error message was written to log).

Simulation should be aborted
8 roadl OR roadf file name not specified

9 roadl OR roadf file name is too long

roadl

name of dynamic library, observing respective OS conventions

roadf

name of urm.c-compatible module in dynamic library, observing respective OS

conventions

3.3.61. ctiloadSoilModel

Select and load soil model library.

Prototype:

void ctilLoadSoilModel (int th, int* ier, charx soill, charx soilf);

Parameters:
in th tire handle
out ier error code
0 ok
1 error occurred when loading soil library (error message was written to log).
Simulation should be aborted
8 soill or soilf file name not specified
9 soill or soilf file name is too long
in soill name of dynamic library, observing respective OS conventions
in soilf name of usm.c-compatible module in dynamic library, observing respective OS

conventions

56

3.3.62. ctiloadSuspensionData

Select and load suspension data file.

This routine will load and pre-process acosin/mbs suspension model for use within ctiComputeForcesOnCarBody
(3.3.9). Suspension model data files should have file extension .cm. After installation ofcosin software, you will

find the following example files in subdirectoryftire/param of your working directory:

_default.cm (a steered double wishbone front suspension)
e double wishbone front.cm

e double wishbone rear.cm

e five link front.cm

o five link rear.cm

e mcpherson_front.cm

e mcpherson_rear.cm

All data files are parameterized with key data, and thus can serve as a starting point for user-defined suspension

models. For more on the format and contents of these files, please refer to thecosin/mbs documentation.
Prototype:

void ctiloadSuspensionData (int th, intx ier, charx file);

Parameters:

in th tire handle

out ier error code
0 ok
1 error occurred when loading data file (error message was written to log).

Simulation should be aborted

2 no license available
8 tire data file name not specified
9 tire data file name is too long

in file tire data file name

57

3.3.63. ctiloadTireData

Select and load tire data file.

Prototype:

void ctilLoadTireData (int th, intx ier, charx file);

Parameters:

th

tire handle

out

ier

error code
0 ok

1 error occurred when loading data file (error message was written to log).

Simulation should be aborted
2 no license available
8 tire data file name not specified

9 tire data file name is too long

file

tire data file name. If data have to be mirrored, place prefix mirror: in front. That

is, file-name mirror: c:\data\mydata.tir will mirror data in file c:\data\mydata.tir

3.3.64. ctiModifyFriction

Modify friction characteristic.

Prototype:

void ctiModifyFriction (int th, double muf);

Parameters:
in th tire handle
in muf friction characteristic modification factor [-]. Default value = 1.0

3.3.65. ctiOpenOutputFile

Open additional plot output file.

Prototype:

58

void ctiOpenOutputFile (int th, intx ier, charx file);

Parameters:

in th tire handle

out ier error code
0 ok
1 error occurred (error message was written to log)
8 output file name not specified
9 output file name is too long

in file output file name

3.3.66. ctiOpenRoadGui

Open road GUI with current road file
Prototype:
void ctiOpenRoadGui (int th);

Parameters:

in th tire handle

3.3.67. ctiOpenTireGui

Open tire GUI with current tire file
Prototype:
void ctiOpenTireGui (int th);

Parameters:

in th tire handle

3.3.68. ctiQuarterCar

Compute the rigid-body state of the rim to be used for stand-alone CT| demonstrations. ctiQuarterCar simulates

a non-linear quarter-car model following a track parallel to the road center-line in the plane. The output rigid-body

59

state (r,a,v,w) can be passed over to ctiComputeForces (or a similar function) without any further adaptation.
Prototype:

void ctiQuarterCar (int th, double t, int mode, double f[3], double m[3], int nin, double in[],
charx fqc, char* fsim, double r[], double a[], double v[], double w[], int nout, double out[],

int* ier);

Parameters:

in th tire handle

in t simulation time [s]

in mode simulation mode (modegyn:= last digit of mode, modep,tn:= last but one digit of

mode, mode,im:= last but two digit of mode)

..0 perform one step for kinematic model: prescribed filtered wheel height based

on road height profile, w/o dynamics

..1 perform one step for dynamic model: wheel height controlled by quarter-car

model
..9 reinitialize quarter-car model
.0. path input: travel path [m]
.1. path input: travel velocity [m/s]
0.. rim rotation input: angle (kinematically driven) [deg]
1.. rim rotation input: drive/brake torque (free rolling) [Nm]

Variable mode sets the initial value of the simulation mode; modedyn, modepos,
and moderot are only evaluated in the first call to ctiQuarterCar for the
respective tire handle, or in the first call after a reinitialization. You can modify
the actually used simulation mode on the fly by respective sources & sinks signals

as defined in file fsim, see below

in f force acting on rim center (point of attack = wheel center) expressed in inertial

frame [N]

in m torque acting on rim center, expressed in inertial frame [Nm]

in nin number of input parameters

60

in

array of input signals. Components:

0 travel path [m] (if modepath= 0)

0 speed along center-line [m/s] (if modepath= 1)

1 shift along center-line [m]

2 signed lateral distance track from road center-line [m]

3 unfiltered wheel height above center-line [m] (if modegyn= 0)

3 loaded radius at zero speed and half LI load [m], used only during initialization
in first step (if modegyn= 1)

4 time constant wheel height low-pass filter [s] (if modegyn= 0)

5 wheel carrier toe angle [deg]

6 wheel carrier camber angle [deg]

7 wheel rotation angle [deg] (if modeim= 0)

7 drive/brake torque [N/m] (if mode;m= 1)

8 static wheel load, controlled by simple quarter-car model [N] (if modegyn= 1)
Array in sets the default values of the input signals. You can modify the
actually used signal values on the fly by respective sources & sinks signals as

defined in file £sim, see below

61

fqc

quarter-car data input file (optional, not used if blank). If not specified,
ctiQuarterCar will use some hardcoded data which are estimated on basis of
the initial value of static wheel load.

fqc is expected to be a data file in cosin/io format. In data-block

$quarter_car, the following optional quarter-car data can be specified:

rim_moment_of_inertia (moment of inertia of rim and all rotating parts

except contribution of FTire's free mass [kgm?])
unsprung_mass (unsprung except contribution of FTire's free mass [kg])

transm_ratio_suspension_spring (transmission ratio between spring

deflection and vertical wheel travel [-])

transm_ratio_shock_absorber (transmission ratio between shock absorber

deflection and vertical wheel travel [-])
shock_absorber_gas_force (shock absorber gas force [N])

suspension_spring_char (data-block name of spline data describing
suspension spring characteristic; spline data typically contain spring

pre-load as well as effective elastic bump and rebound stops)

shock_absorber_char (data-block name of spline data describing shock
absorber characteristic; spline data typically contain damper friction forces

at very small deflection velocities)

shock_absorber_bearing_char (data-block name of spline data describing

shock absorber bearing radial stiffness)

File ftire/param/_default.cqc, located in cosin’s private data folder, is an
example of such a fqc file, containing a data block $quarter_car with all data
as described above. Note that this file can be used both as fqc and fsim at the

same time.

62

fsim

simulation control input file (optional, not used if blank).
fsim is expected to be a data file in cosin/io format. In data-block $sources,

the following optional source signals can be specified:

vert_dynamic (=1 if vertical quarter-car motion is to be simulated dynamically,
=0 if wheel height is set by low-pass-filtered center-line height;

vert_dynamic redefines modegyn)

input_0_pos_1_vel_2_none (=0 if position is directly set by travel path along
track; =1 if quarter—car position on track is set by internally integrated
horizontal velocity; =2 if actual velocity results from longitudinal dynamics
driven by tire force in center-line heading direction;

input_O_pos_1_vel_2_none redefines value of modepath)

free_rolling (=1 if wheel rotation angle is computed dynamically, using
drive/brake torque as input signal; =0 if wheel rotation angle is directly set;

free_rolling redefines value of modeyim)
travel_path (sets travel path value in [m]; only used if input_velocity=0)

travel_velocity (sets velocity along track in [m/s]; only used if

input_velocity=1)

distance_to_center_line (sets track distance to road center-line in [m];

default value in[2])

loaded_radius (sets vertical distance of wheel center from filtered center-line

height in [m]; only used if vert_dynamic=0; default value in[31)

toe_angle (angle between wheel mid-plane and track tangent in [deg],

measured counter-clockwise; default value in[5])
camber_angle (camber angle in [deg]; default value in[6])

rim_rotation_angle (rim rotation angle about wheel spin axis in [deg]; only

used if free_rolling=0; default value in[7])
drive_torque (only used if free_rolling=1; default value in[71)
brake_torque (only used if free_rolling=1; default value 0)

static_wheel_load (static wheel load as defined by weights of unsprung and

sprung mass in [N]; only used if vert_dynamic=1; default value in[8])

ctiQuarterCar provides following sinks signals for use in any expressions for

source signals:

out T rigid-body state of rim: position
out a rigid-body state of rim: orientation
out v rigid-body state of rim: velocity
out W rigid-body state of rim: angular velocity
in nout number of output values
out out array of output values. Components:
1 velocity along track [m/s]
2 track curvature in x/y-plane [1/m]
3 lateral acceleration [m/s"2]
4 heading angle [deg]
5 local center-line friction factor [-]
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

3.3.69. ctiReadLTIMatrices

Read linearized A,B system matrices from file. Only needed for ADAMS GSE interface.

Prototype:

void ctiReadLTIMatrices (int th, intx ier);

Parameters:
in th tire handle
out ier error code
0 ok

1 no success

64

3.3.70. ctiReadOperatingConditions

Read time- or location-dependent operating conditions from TeimOrbit file, and apply them at actual time.
Prototype:

void ctiReadOperatingConditions (int th, double t, double r[], intx ier);

Parameters:
in th tire handle
in t simulation time
in T rigid-body position of rim
out ier error code

0 ok

...... xx (xx>0) error opening or reading data file

..... 1.. first operating condition type not supported
..... 2.. first operating condition not specified

....1... second operating condition type not supported
....2... second operating condition not specified
...1.... third operating condition type not supported
...2.... third operating condition not specified

I fourth operating condition type not supported

W2 fourth operating condition not specified

B fifth operating condition type not supported
2. fifth operating condition not specified
1....... sixth operating condition type not supported
2....... sixth operating condition not specified

3.3.71. ctiReadStates

State array in (read from file).

Prototype:

void ctiReadStates (int th, intx ier, charx file);

Parameters:

in th tire handle

out ier error code
0 ok
1 file containing state array not found
2 file containing state array not valid
3 state array size unknown since no tire data file loaded
4 file containing state array created by different cosin version
5 unspecified error reading state file (corrupted file?)
8 file name not specified
9 file name is too long

in file file to read state array from. Note that each tire instance needs a separate file.

3.3.72. ctiReadStatesMemory

State array in (read from memory).
Prototype:

void ctiReadStatesMemory (int th, int mode, int memsize, doublex mem, int* ier);

Parameters:
in th tire handle
in mode mode flag
0 write all states and output values
1 write all states
in memsize size of memory block 'mem’. Use ctiGetArraySize(flag = 10 + mode) to obtain
the CTI state array size for declaration or allocation of the memory block 'mem’.

66

in mem memory block containing the states
out ier error code
0 ok

1 provided array size larger than CTI state array size. Incompatibility likely

2 provided array size too small. Incompatible

3.3.73. ctiRecorder

Set/unset record output flag.

Prototype:

void ctiRecorder (int th, int rec);

Parameters:
in th tire handle
in rec record flag:

0 stop record output for this tire instance

1 start record output for this tire instance, use common record file (does not work

with multi-threaded call), if speed mode == 0 and not in diagnosis mode

2 start record output for this tire instance, create and use individual record file, if

speed mode == 0 and not in diagnosis mode

3.3.74. ctiReset

Reset CTI.

Prototype:

void ctiReset (void);

Parameters:

none

67

3.3.75. ctiSaveRecordedForcesMoments

Save recorded forces and tmoments.

Prototype:

void ctiSaveRecordedForcesMoments (int th, double f[], double m[]);

Parameters:
in th tire handle
in f recorded forces [N]
in m recorded moments [Nm]

3.3.76. ctiSetAffinity

Set tire (thread) affinity.
Prototype:

void ctiSetAffinity (int

th, int mode, int cpu_id);

Parameters:
in th tire handle
in mode set mode:
0 set tire thread affinity to cpu_id
1 set tire thread affinity to ti_0 modulo N, where ti_0 is the belonging tire
instance (0-based) and N is the number of processors
Note: cpu_id is not used in this case
in cpu_id cpu id (0-based)

3.3.77. ctiSetAmbientTemperature

Set tire (or ambient) temperature.

Prototype:

void ctiSetAmbientTemperature (int th, double ttemp);

Parameters:

68

tire handle

in ttemp

tire (or ambient) temperature [degC]

3.3.78. ctiSetAnimationStepSize

Set animation step-size h.

Prototype:

void ctiSetAnimationStepSize (int th, double h);

Parameters:
in th tire handle
in h animation step-size [ms]

3.3.79. ctiSetCompatVersion

Set compatibility version.
Prototype:

void ctiSetCompatVersion

(int th, int mode, int value);

Parameters:
in th tire handle
in mode mode flag:
0 value is a version, format = YYYYQ, default is 0 (latest version)
1 value is a date, format = YYYYDDMM, default is O (latest date)
in value compatibility version (mode = 0)
OR
compatibility date (mode = 1)

Note: this function is only effective if called before ctiLoadTireData.

The compatibility date or version can be influenced in several ways:

1. with the environmental variable COSIN _OPTIONS

2. by setting the command-

line option -cosin _compvers

69

3. by selecting a 'mimicking library version’ in cosin’s GUI
4. by specifying a compatibility date or version in the tire data file, using cosin/tools for tires
5. by calling ctiSetCompatVersion

The compatibility date or version actually in effect will be the earliest of all dates specified in any of the ways

listed above. CTI will write a message stating the date in effect and the source of this date.

Only the newest cosin software version lets you take advantage of all the latest model enhancements and bug
fixes. So please have in mind that cosin does not recommend making use of the compatibility date. Only reason

to do so anyway is being urged to exactly reproduce results obtained with an older cosin version.

3.3.80. ctiSetContactBodyMotionData

Set contact body motion data.
Prototype:

void ctiSetContactBodyMotionData (int th, int cbh, double r[], double a[], double v[], double

wll);

Parameters:

in th tire handle

in cbh contact body handle, refers to body handle in accompanying triangulation-based
road data file

in T rigid-body states of contact body: displacement of reference point in global
coordinates

in a rigid-body states of contact body: transformation matrix from body-fixed
coordinates to global coordinates, cf. ctiComputeForces

in v rigid-body states of contact body: displacement velocity vector in global
coordinates

in W rigid-body states of contact body: angular velocity vector in global coordinates

3.3.81. ctiSetDesignParameter

Set design parameter for use in arithmetic expressions defining parameter values in tire data file. ctiSetDesignParameter
must be called prior to ctiSetLoadTireData for the respective tire handle.

Prototype:

void ctiSetDesignParameter (int th, int kp, double vp);

70

Parameters:

in th tire handle
in kp index of parameter to be set
in vp parameter value to be set

3.3.82. ctiSetDiagMode

Set diagnosis level.
Prototype:

void ctiSetDiagMode (int th, int diag);

Parameters:
in th tire handle
in diag set diagnosis level

0 diagnosis for tire handle off
1 diagnosis for tire handle, level 1: force mtl output

>2 diagnosis for tire handle, level 2: force mtl output, force animation

3.3.83. ctiSetDrumTorque

Set the drive/brake torque acting on a drum testrig. This torque, which is positive for driving and negative for
braking, does not contain the reaction torques due to tire longitudinal forces, but only the external drive/brake
torque of the testrig. If several tires are running on the same drum, make sure that this torque is set (by calling
ctiSetDrumTorque) for only one of these tires. Tire reaction torques will be accumulated automatically by CTI
for all wheels runing on the same drum. Drums will be considered the same if their respective x/y location (as
optionally set in the 2D road model type 'drum’, see cosin/roads docu) is the same. Resulting drum angular
speed will be computed and set by CTIl on basis of the tire reaction torques, the applied torque as set by

ctiSetDrumTorque, and the drum's moment of inertia as set in the road data file.
Prototype:
void ctiSetDrumTorque (int th, double tdrum);

Parameters:

71

in th tire handle

in tdrum drum drive/brake torque [Nm]

3.3.84. ctiSetInflationPressure

Set the current 'cold’ inflation pressure.
Prototype:

void ctiSetInflationPressure (int th, double press);

Parameters:
in th tire handle
in press inflation pressure [bar]

3.3.85. ctiSetInitialRimAngle

Set initial rim rotation angle (effective only together with the alternative interface). This function is to be called
prior to the first call to ctiComputeForcesOnWheelCarrierxxx() for the respective tire instance.

Prototype:

void ctiSetInitialRimAngle (int th, double arimO);

Parameters:
in th tire handle
in arim0 initial rim rotation angle [deg]

3.3.86. ctiSetInitialTemperature

Set initial tire temperatures of filling gas and mean tread surface temperature. This function is to be called prior
to the first call to ctiComputeForcesxxx() for the respective tire instance, and is effective only if the thermal model

is activated.
Prototype:
void ctiSetInitialTemperature (int th, double ttempO);

Parameters:

in th tire handle

72

in ttempO

initial tire temperature [degC]

3.3.87. ctiSetInitialTireTemperatures

Set initial tire temperatures of filling gas and mean tread surface temperature. This function is to be called prior

to the first call to ctiComputeForcesxxx() for the respective tire instance, and is effective only if the thermal model

is activated.

Prototype:

void ctiSetInitialTireTemperatures (int th, double tgO, double ttO);

Parameters:
in th tire handle
in tg0 initial filling gas temperature [degC]
in tt0 initial mean tread surface temperature [degC]

3.3.88. ctiSetIntegerRoadParameter

Set single integer road parameter.

Prototype:

void ctiSetIntegerRoadParameter (int th, int irp, int virp);

Parameters:
in th tire handle
in irp index of parameter to be set
in virp parameter value to be set

3.3.89. ctiSetMultiThreadedCallFlag

Set multi-threaded call flag.

Prototype:

void ctiSetMultiThreadedCallFlag (void);

Parameters:

none

73

3.3.90. ctiSetNotify

Register a notify callback function.

Prototype:

void ctiSetNotify (int th, int type, voidx handle, voidx retbuf, intx* ier);

Parameters:

in th tire handle

in type notify type
0 notify if worker thread created
1 notify if time step started
2 notify if time step stopped
3 notify if time step started and return current time stamp
4 notify if time step stopped and return current time stamp

in handle notify function pointer oftypedef CTINOTIFY

in retbuf notify return buffer, passed to handle. Ensure the buffer matches with the notify
type. Buffer typedefs are defined in ctinotify.h header file.

out ier error code
0 ok
1 error occurred (error message was written to log). Simulation should be

aborted

Example Code:

#include
#include

”Cti .hll

"ctinotify .h"

int handle (voidx retval) {

ctinotifyO0 tx r

if () {

(ctinotify0 tx) retval;

74

printf("Worker thread created (tid=%p, th=%i)\n", r—>tid, r—th);

}

return (0);

}

ctinotify0 t retval; /x working array for notify callback x/

ctiSetNotify (th, 0, &handle, &retval , &ier);

3.3.91. ctiSetOption

Set program option for use within other CTI or FTire function
Prototype:

void ctiSetOption (char* option, char* value);

Parameters:
in option option name (a list of recognized option names will be added as soon as available)
in value option value

3.3.92. ctiSetOutputFilePrefix

Set folder and prefix of output files.
Prototype:

void ctiSetOutputFilePrefx (char* folder, char* prefix);

Parameters:
in folder folder to save output files to (using respective operating system's naming
conventions)
in prefix prefix of output file names. Suffixes will be set automatically, using tire index.
File extensions indicate data types

3.3.93. ctiSetOutputStepSize

Set output step-size h.

Prototype:

75

void ctiSetOutputStepSize (int th, double h);

Parameters:
in th tire handle
in h step-size for output of additional data in files [m/s]

3.3.94. ctiSetPrmHandle

Set PRM handle.

Prototype:

void ctiSetPrmHandle (void# ph);

Parameters:

ph

external PRM handle

3.3.95. ctiSetRGRCanvasGeometry

Set geometry of an RGR-based 'canvas’ in which skidmarks, water film heights and other variable location-

dependent road attributes can be saved in case no road file is specified. No canvas is created, and so these

geometry data are not used, if a road file is specified for all tire instances.

Prototype:

void ctiSetRGRCanvasGeometry (int nprc, double prc[], int* ier);

Parameters:

in

nprc

size of prc array as provided by calling program (only components of prc within

this limit will be accessed and used)

prc

canvas geometry parameter array

prc[0]: lower x-value of RGR grid [m]

prc[1]: upper x-value of RGR grid [m]

prc[2]: lower y-value of RGR grid [m]

prc[3]: upper y-value of RGR grid [m]

prc[4]: grid line distance x-direction of RGR grid [m]

prc[5]: grid line distance y-direction of RGR grid [m]

out

ier

error code

0 ok

76

3.3.96. ctiSetRoadEvalPreference

Set road evaluation preference.
Prototype:

void ctiSetRoadEvalPreference (int th, int pref);

Parameters:
in th tire handle
in pref road evaluation preference indicator

0 use default evaluation method
1 if available, prefer cosin evaluation method

2 if available, prefer 3rd-party evaluation method

3.3.97. ctiSetRoadMotionData

Set road motion data.
Prototype:

void ctiSetRoadMotionData (int th, double r[], double al[], double v[], double w[]);

Parameters:
in th tire handle
in T rigid-body state of road-supporting body
in a rigid-body state of road-supporting body
in v rigid-body state of road-supporting body
in W rigid-body state of road-supporting body

3.3.98. ctiSetRoadParameters

Set/overwrite current road parameters; see also ctiGetRoadParameters().
Prototype:
void ctiSetRoadParameters (int th, int pri[], double prd[]);

Parameters:

in th tire handle

in pri integer road parameters

Note: array size to be queried by ctiGetArraySize (8,&npri)

in prd double road parameters. Do not use if prd[0]=NaN.

Note: Array size to be queried by ctiGetArraySize (9,&nprd)

3.3.99. ctiSetRoadTemperature

Set road surface temperature.
Prototype:

void ctiSetRoadTemperature (int th, double troad);

Parameters:
in th tire handle
in troad road surface temperature [degC]

3.3.100. ctiSetRunTimeMode

Set or limit run-time mode and enable/disable step-size control of calling solver. Note: the 4 levels of 'accelerated
execution mode’ and the 5 levels of 'real-time mode’ are composed of specific values of the run-time mode set here,
and of additional specifications of numerical settings like force extrapolation and so on. These numerical settings
are specified either in one of the ctiComputeForces.. () calls, or directly in the tire data file (see cosin/tools
for tires for more). If an accelerated execution level or real-time level is set in the tir-file, ctiSetRunTimeMode ()

doesn't need to be called.
Prototype:
void ctiSetRunTimeMode (int rm);

Parameters:

78

rm

number with up to two decimal digits with following meaning:
<0 exit without any changes

-1 do not accept step-size control of calling solver (default for run-time mode

modes 4 and 5)
-2 accept step-size control of calling solver (default for run-time modes 0 to 3)
.0 set standard run-time mode
.1 set run-time mode 1: no model extensions
.2 set run-time mode 2: no model extensions, no output
.3 set run-time mode 3: no model extensions, no output, coarse mesh

.4 set run-time mode 4: no model extensions, no output, coarse mesh, reduced
extra signal output, solver must run with fixed step-size (this condition can

be relaxed, see above)

.5 set run-time mode 5: no model extensions, no output, coarse mesh, minimum
extra signal output, solver must run with fixed step-size (this condition can

be relaxed, see above)
0. unconditionally set run-time mode to value as specified in last digit

1. downward restrict run-time mode by value as specified in last digit. Effective

only if called after tire data files have been loaded

2. upward restrict run-time mode by value as specified in last digit. Effective

only if called after tire data files have been loaded

3.3.101. ctiSetStatesMemory

Specify state array out (write to memory). Writing is triggered by job flag in ctiComputeForcesList.

Prototype:

void ctiSetStatesMemory (int th, int mode, int memsize, doublex mem, intx ier);

Parameters:

79

in th tire handle
in mode mode flag
0 write all states and output values
1 write all states
in memsize size of memory block 'mem’. Use ctiGetArraySize(flag = 10 + mode) to obtain
the CTI state array size for declaration or allocation of the memory block 'mem’.
out mem memory block to store the states
out ier error code
0 ok
1 provided array size too small. Incompatible

3.3.102. ctiSetTimeConstantForces

Set time constant of force low-pass filter.

Prototype:

void ctiSetTimeConstantForces (int th, double tconst);

Parameters:
in th tire handle
in tconst time constant, may be zero or negative [s]

3.3.103. ctiSetTirePPDataFileName

Set tire pre-processed data filename.

Prototype:

void ctiSetTirePPDataFileName (int th, int* ier, charx file);

Parameters:

80

in th tire handle

out ier error code

0 ok

8 file name not specified

9 file name is too long

1 error occurred (error message was written to log). Simulation should be aborted

in file pre-processed tire-data filename

3.3.104. ctiSetTireSide

Set tire side. ctiSetTireSide must be called prior to loading tire data with ctiLoadTireDatal

Prototype:

void ctiSetTireSide (int th, int side);

Parameters:
in th tire handle
in side mounted tire side. Values:

0 automatic

1 left

2 right

all other values: side unchanged

3.3.105. ctiSetTreadDepth

Set tread depth.
Prototype:

void ctiSetTreadDepth (int th, double tdepth);

Parameters:
in th tire handle
in tdepth tread depth [mm]

81

3.3.106. ctiSetUPROXY

Register user-defined proxy function of typedef UPROXY as callback function.
Prototype:
void ctiSetUPROXY (UPROXY func);

Parameters:

in func user-provided callback function

3.3.107. ctiSetURIM

Register user-defined road model function of typedef URIM as callback function.
Prototype:

void ctiSetURIM (int th, URIM func);

Parameters:
in th tire handle
in func user-provided callback function

3.3.108. ctiSetURM

Register user-defined road model function of typedef URM as callback function. FTire will call this function to
evaluate road height instead of its internal road evaluation function. For each individual tire handle, ctiSetURM

may define an individual callback function, and is used mutually exclusively to ctiLoadRoadData.
Prototype:
void ctiSetURM (int th, intkier, URM func, charx road_file);

Parameters:

in th tire handle

82

out ier error code
0 ok

1 error occurred when loading data file of user-defined road model. Simulation

should be aborted
8 road data file name not specified

9 road data file name is too long

in func user-provided road model callback function.

in road_file road data filename of user-defined road model. This file name is passed over to

the URM function

3.3.109. ctiSetURGM

Register user-defined road grid model function as callback function. FTire will call this function to evaluate
road height for a whole grid instead of its internal road evaluation function. For each individual tire handle,

ctiSetURGM may define an individual callback function.
Prototype:

void ctiSetURGM (int th, int type, void* func, void* param, int param_size, int* ier);

Parameters:
in th tire handle
in type type of callback function
in func user-provided road grid model callback function
in param user-provided parameter structure.
Note: can be NULL
in param_size | size of parameter structure above
out ier error code
0 ok

83

3.3.110. ctiSetUSM

Register user-defined road model function of typedef USM as callback function.

Prototype:

void ctiSetUSM (int th, USM func);

Parameters:
in th tire handle
in func user-provided callback function

3.3.111. ctiSetVehicleStates

Set vehicle states (for use in animation and certain 2D roads).

Prototype:

void ctiSetVehicleStates

(double tv, double r[], double al], double v[], double w[]);

Parameters:
in tv current simulation time
in T rigid-body state of vehicle body
in a rigid-body state of vehicle body
in v rigid-body state of vehicle body
in W rigid-body state of vehicle body

3.3.112. ctiSetWheelCenterRefPosition

Set wheel center reference position.

Prototype:

void ctiSetWheelCenterRefPosition (int th, double rl[], double alll);

Parameters:
in th tire handle
in rl wheel center reference position in global coordinates
in al wheel reference transformation matrix

84

3.3.113. ctiUpdateRoadData

Update RGR road data file no action, if no RGR road or no update file available.

Prototype:

void ctiUpdateRoadData (int th, double t, int* ier, charx file);

Parameters:
in th tire handle
in t simulation time
out ier error code
0 ok
1 error occurred when loading data file (error message was written to log).
Simulation should be aborted
2 no license available
in file filename with RGR update data, as created by evrgru

3.3.114. ctiUpdateWheelEnvelope

Update wheel envelope.

Prototype:

void ctiUpdateWheelEnvelope (int th);

Parameters:

tire handle

3.3.115. ctiVerbose

Set/unset verbosity.

Prototype:

void ctiVerbose (int th,

Parameters:

int v);

85

in th tire handle

in v verbosity flag
<0 exit without any changes
0 verbosity for tire th off

1 verbosity for tire th on

3.3.116. ctiWriteAdditionalOutput

Set/unset additional plot output in mtl (ascii) or mtb (binary) file
Prototype:

void ctiWriteAdditionalOutput (int th, int ao);

Parameters:
in th tire handle
in ao flag to request / set kind of additional plot output in mtl (ascii), mtb (binary), or

tdx (TYDEX) file

0 off

1 on (only standard plot signals, ascii)
2 on (more plot signals, ascii)

3 on (all available plot signals, ascii)

4 on (only standard plot signals, binary)
5 on (more plot signals, binary)

6 on (all available plot signals, binary)

7 on (minimal set of plot signals in TYDEX file format)

3.3.117. ctiWriteCustomizedTireData

Write customized tire data file.

86

Prototype:

void ctiWriteCustomizedTireData (char* file_in, char* file_out, int mode, int optc, charx optv[],

int* ier);
Parameters:
in file_in input file name
in file_out output file name
in mode mode flag
0 replace file references in file_in with new file names specified in optv][j] for all j
in {0,...,optc - 1}. Format of optvl[j]: description=new-file-path (e.g.
tread pattern file=/tmp/a b/tread patternl.png) where the description
string can be obtained by calling ctiGetTireDependFiles
in optc number of options
in optv option array of size optc
out ier error code
0 ok
1 file could not be written
8 file name not specified
9 file name is too long
Demo:

<cosin-install-folder> /interface/cti/ctiWriteCustomized TireDataDemo.c

3.3.118. ctiWriteLTIMatrices

Write linearized A,B system matrices to file. Only needed for ADAMS GSE interface.
Prototype:
void ctiWriteLTIMatrices (int th, intx ier);

Parameters:

87

in th tire handle

out ier error code

0 ok

1 files could not be written

3.3.119. ctiWritePlotSignallabels

Get number and list of plot signal labels.
Prototype:

void ctiWritePlotSignalLabels (int th, char* file, char* fisigl, int* nsl, intx ier);

Parameters:

in th tire handle

in file tire data file (will neither be loaded, nor does it need to be loaded)

in fisigl name of an ascii file containing, as the result of ctiWritePlotSignallabels,
the labels and, separated by commas, the physical units of all output signals as
actually generated by a simulation using the tire data file file

out nsl number of plot signals

out ier error code

0 ok
1 tire data file not found or could not be loaded
8 file OR fisigl name not specified

9 file OR fisigl name is too long

3.3.120. ctiWriteRoadData

Write road data of x/y region swept during previous simulation, in terms of an rgr file. Size and resolution of the

file can be set with cosin/tools for tires, "output’ tab.
Prototype:

void ctiWriteRoadData (int th, int* ier);

88

Parameters:

in th tire handle
out ier error code
0 ok

1 file could not be written

3.3.121. ctiWriteStates

State array out (write to file).

Prototype:

void ctiWriteStates (int

Parameters:

th, intx ier, charx file);

th

tire handle

out

ier

error code

0 ok

1 file containing state array could not be written; too many other files open
3 no state array available for writing since no tire data file loaded

5 unspecified error writing file containing state array (device full?)

8 file name not specified

9 file name is too long

file

file to save state array to. note that each tire instance needs a separate file.

3.3.122. ctilWriteStatesMemory

State array out (write to memory).

Prototype:

void ctiWriteStatesMemory (int th, int mode, int memsize, doublex mem, intx ier);

Parameters:

89

in th tire handle

in mode mode flag
0 write all states and output values

1 write all states

in memsize size of memory block 'mem’. Use ctiGetArraySize(flag = 10 + mode) to obtain

the CTI state array size for declaration or allocation of the memory block 'mem’.

out mem memory block to store the states
out ier error code
0 ok

1 provided array size too small

3.3.123. ctiWriteWheelEnvelope

Write wheel envelope.
Prototype:
void ctiWriteWheelEnvelope (int th);

Parameters:

in th tire handle

3.4. Client related APl Function Reference

3.4.1. ctiConnectToServer

Connect to CTI server.
Prototype:
void ctiConnectToServer (CTICLIINIT* param, int* ier);

Parameters:

in param parameter structure of typedef CTICLIINIT

Note: Use CTICLIINIT_INITIALIZER to initalize this structure.

90

out ier

error code

0 ok

3.5. API Type Definition Reference

3.5.1. typedef CTIINIT

Parameter structure for ctiInit:

typedef struct { UMSGF message_func; char output_folder[256]; char output_prefix[64];

int calling_solver; int mt_call_flag; int nr_options; char* options[64];

int major_version; UPROXY proxy_func; int sig_flag;} CTIINIT;

Note: Use CTIINIT INITIALIZER macro to initialize this structure.

Members:

message_func

message output callback function of typedef UMSGF. If specified, FTire will call

this function to pass messages to the calling application.

output_folder

directory to save output files to

output_prefix

output file prefix

calling_solver

calling solver environment

0 unknown (default)

mt_call_flag

multi-threaded call flag
..0 single-threaded (default)

..1 multi-threaded, mandatory if a function from CTI Multi-Threading

Extension (CTIMT) is called
.0. default affinity handling is enabled
.1. default affinity handling is disabled
0.. off-line application

1.. hardware-in-the-loop application

91

nr_options

number of options stored in options array

options

options array

major_version

cosin major version.

Note: Do not change this value!

proxy_func

proxy output callback function of typedef UPROXY.

sig_flag

signal handler flag
0 register a signal handler to catch Ctrl-C signal (default)

1 do not register a signal handler

3.5.2. typedef CTINOTIFY

User-defined notify function:

typedef int (*CTINOTIFY) (void* retbuf);

Parameters:

in/out retbuf

notify return buffer

3.5.3. typedef UMSGF

User-defined message function callback:

typedef void(xUMSGF) (int level, charx message);

Parameters:
in level severity level
0 info
1 warning
2 error
3 fatal error
in message message string

92

3.5.4. typedef UPROXY

User-defined proxy function callback:

typedef void(xUPROXY) (int mode, char* input, char* output, int* output_size, int* ier);

Parameters:
in mode proxy mode
0 database name resolution
in input input string
out output output string of size 'output _size'
in output_size | size of output string 'output’
out ier error code
0 okay
1 output array to small

3.5.5. typedef URIM

User-defined rim model callback:

typedef void(*URIM) (int th, int nseg, double rrim, double wrim, double t, double f1[][3],
double fr[][3], double del[][3], double der[][3], double dpl[][3], double dpr[][3], intx ier,

char* rim_file);

Parameters:
in th tire handle (tire instance if using deprecated function ctiSetURIMFunc)
in nseg number of equally distributed nodes on one rim flange
in rrim rim bead radius [m]
in wrim axial rim flanges distance [m]
in t simulation time, terminate model if t>= 1e60 [s]
in fl force array on left rim flange nodes, in cylinder coordinates [N]
in fr force array on right rim flange nodes, in cylinder coordinates [N]
out del elastic displacements of left rim flange nodes, in cylinder coordinates [m]
out der elastic displacements of right rim flange nodes, in cylinder coordinates [m]

93

in/out dpl plastic deformation of left rim flange nodes, in cylinder coordinates [m]
in/out dpr plastic deformation of right rim flange nodes, in cylinder coordinates [m]
out ier error code

0 ok
in rim_file data file name

3.5.6. typedef URM

User-defined road model callback:

typedef void(xURM) (int th, double t, double x, double y, doublex z, doublex vx, doublex vy,

doublex vz, doublex mu, int* ier, charx road_file);

Parameters:

in th tire handle (tire instance if using deprecated function ctiSetURMFunc)

in t simulation time, terminate model if t>= 1e60 [s]

in X x-coordinate of point for road evaluation, in global coordinates. If road is moved
with ctiSetRoadMotionData or similar, position is relative to this moving
coordinate system [m]

in y y-coordinate of point for road evaluation, in global coordinates. If road is moved
with ctiSetRoadMotionData or similar, position is relative to this moving
coordinate system [m]

out z evaluated road height, in global coordinates. If road is moved with
ctiSetRoadMotionData or similar, height is relative to this moving coordinate
system [m]

out VX evaluated x-component of road surface velocity, in global coordinates. If road is
moved with ctiSetRoadMotionData or similar, velocity is relative to this moving
coordinate system [m/s]

out vy evaluated y-component of road surface velocity, in global coordinates. If road is
moved with ctiSetRoadMotionData or similar, velocity is relative to this moving
coordinate system [m/s]

out vz evaluated z-component of road surface velocity, in global coordinates. If road is
moved with ctiSetRoadMotionData or similar, velocit is relative to this moving
coordinate system [m/s]

94

out mu evaluated road/tread friction coefficient correction factor (typically=1.0)
out ier error code

0 ok
in road_file data file name

3.5.7. typedef USM

User-defined soil model callback (See also SAE_2008 M20 Paper Gipser.pdf):

typedef void(xUSM) (double x0, double dx, int nx, double yO, double dy, int ny, double phi,
double fx[], double fy[]l, double fz[], double z[], double vx[], double vy[], double vz[], double

mul[], int th, int mode, double dt, charx soil_file);

Parameters:

in x0 grid origin in global coordinates, provided by the tire model [m]

in dx grid spacing in x/y-direction, provided by the tire model [m]

in nx number of grid points in x/y- direction, provided by the tire model.

in yO grid origin in global coordinates, provided by the tire model [m]

in dy grid spacing in x/y-direction, provided by the tire model [m]

in ny number of grid points in x/y- direction, provided by the tire model.

in phi counter-clockwise grid rotation angle about z-axis, provided by the tire model.
[deg]

in fx x-components of contact forces in global coordinates, provided by the tire model
IN]

in fy y-components of contact forces in global coordinates, provided by the tire model
IN]

in fz z-components of contact forces in global coordinates, provided by the tire model
IN]

out z z-elevations of grid points, returned by the soil model [m]

out VX x-components of grid point velocities in global coordinates, returned by the soil
model [m/s]

out vy y-components of grid point velocities in global coordinates, returned by the soil
model [m/s]

95

out vz z-components of grid point velocities in global coordinates, returned by the soil
model [m/s]
out mu sliding friction modification factors in grid points, returned by the soil model.
in th tire handle (tire instance if using deprecated function ctiSetUSMFunc) of calling
tire, to be used in soil model to select the respective tire's parameter and state
arrays; provided by the tire model.
in mode mode:
0 initialize the soil model instance given by tire instance, using data file
soil_file
1 call the soil model which applies the contact forces and advances its state
variables according to time-step dt; compute and return new grid elevations
and velocities for soil-model instance given by tire instance
99 terminate the soil model instance given by tire instance
in dt current simulation time step [s]
in soil_file name of the file that contains the data of the soil model. Passed through from

the calling simulation program via the tire model to the soil model.

96

3.6. Deprecated API Function Reference

Deprecated CTI Function

Recommended CTI Function

Remarks

ctiAnimateSceneWithExtRoad

ctiCallingSolver

ctilnit

set calling _solver in typedef

CTIINIT

ctiComputeForcesTimeContinuous-

WithExtRoad

ctiComputeForcesWithExtRoad

ctiComputeForcesWithExtRoadList

ctiComputeForcesWithExtRoadMT

ctiFollowRoad

ctiQuarterCar

ctiGetOperatingConditions

ctiReadOperatingConditions

ctiGetOutputSignal ctiGetPlotSignal

ctiGetStates ctiWriteStates

ctilnitialize ctilnit set calling_solver, output_folder
and output_ prefix in typedef
CTIINIT

ctilLoadSTIRoadModel discontinued since cosin version
2019-1

ctiloadSTITireModel discontinued since cosin version

2019-1

ctiPutContactBodyForces

ctiGetContactBodyForces

ctiPutLTIMatrix

ctiGetLTIMatrix

ctiPutNodePositions

ctiGetNodePositionsWithAttributes

ctiPutOutputSignal

ctiGetPlotSignal

ctiPutOutputSignalNumber

ctiGetOutputSignalNumber

ctiPutRimForces

ctiGetRimForces

ctiPutRimProperties

ctiGetRimProperties

ctiPutRimRotationStates

ctiGetRimRotationStates

ctiPutRoadForces ctiGetRoadForces
ctiPutStates ctiReadStatesMemory
ctiPutTireKeyData ctiGetTireKeyData

ctiPutTireProperties

ctiGetTireProperties

ctiPutTreadStates

ctiGetTreadStates

97

ctiPutTydexSignals ctiGetTydexSignals

ctiSetMessageFunc ctilnit set message func in typedef
CTIINIT

ctiSetModelLevel

ctiSetServer ctiConnectToServer

ctiSetPPTireDataFilename

ctiSetTirePPDataFileName

ctiSetURIMFunc ctiSetURIM
ctiSetURMFunc ctiSetURM
ctiSetUSMFunc ctiSetUSM

98

4. CTI Multi-Threading Extension (CTIMT)

FTire and HTire solver allow to run the time integration of multiple tire instances in parallel. This can save a

significant amount of computing time on multi-core systems.

The multi-threading extension of CTI are an extension to the API functions, providing multi-threaded evaluation

calls.

In the multi-threading extension of CTI, an extra program thread is assigned to every tire instance. Passing
information to and from these threads is organized within CTI. Typically, in every time step of the calling
integrator, every thread receives actual values of its input signals (like the respective wheel position and velocity
values). Then, it will advance one step in time and return the resulting output signals (like the respective wheel
forces and moments) in commonly known variables. After completion of the time step, the thread will wait until

it is triggered by CTI to perform the next step.

Obviously, all threads may (and should) run in parallel. They are not directly interfering in any way with each other.
Somehow simplified, this property is called ‘thread-safe’. Best performance will be reached if, in a single time
step, all threads receive their input signals at the beginning of the step and then start computing simultaneously.
The calling program starts waiting for the results only after all threads have been made busy. CTIMT can even
be configured such that the calling program itself runs in parallel with the parallelized CTI tire instances, thus

enabling real-time applications with full vehicle simulation models using FTire.

Some parts of the initialization of CTI inevitably must run sequentially, for several software architectural reasons.
Anyway, this is not relevant with respect to computing time. The only potentially time-consuming computation
during initialization is the FTire pre-processing in case its data have changed. But this pre-processing, in most
cases, is required only for one tire instance. The others share the same pre-processed data. Because of this,

pre-processing cannot be parallelized anyway.

4.1. Program Structure of CTIMT Applications

Typical multi-threaded CTI applications will be structured as follows:
1. Call ctiInit to initialize the interface.

2. Loop over all tire instances to be computed, loading tire and road data with routines

ctilLoadTireData and ctiloadRoadData, as usual.

3. Enter the time loop. In every time step,

a) loop over all tire instances. Update wheel position and velocity variables and tell the respective thread

to perform one step, using the CTI functions ctiComputeForcesMTor ctiComputeForcesOnWCarrierMT

99

b) in a second loop, only after having triggered all threads by completing the first loop, wait for all threads
to complete the current step and return the resulting wheel forces and moments. Both is performed

by the CTI function ctiGetForcesMT;

4. Terminate all threads and CTI functions by calling ctiClose, as usual.

The complete time-loop part in step (2) of this algorithm is implemented in the two routines
ctiComputeForcesList and ctiComputeForcesOnWCarrierList. These routines act as if they were simul-
taneous calls to routine ctiComputeForces or ctiComputeForcesOnWheelCarrier, respectively, but in full

multi-threaded mode.

Note that, when wusing the latter two user-friendly routines, neither ctiComputeForcesMT,
ctiComputeForcesOnWCarrierMT nor ctiGetForcesMT is required. Those routines might be necessary if
the tire instances are treated by the calling solver at different times or in different places. However, users
are strongly encouraged to use ctiComputeForcesList and ctiComputeForcesOnWCarrierList instead of

ctiComputeForcesMT, ctiComputeForcesOnWCarrierMT, orctiGetForcesMT.

Simple main programs demonstrating multi-threaded CTI application are contained in the ctiMtDemo.c.

4.2. API Function Reference

4.2.1. ctiComputeForcesList

Compute forces for list of tire instances in multi-threaded mode.
Prototype:

void ctiComputeForcesList (int nthl, int thl[], double t, double r[][3], double a[][9], double

v[1[3], double w[][3], int mode, double f[][3], double m[][3], intx ier);

Parameters:
in nthl number of tire instances
in thl list of tire handles
in t simulation time [s]
in T rigid-body states of rims: positions
in a rigid-body states of rims: orientations
in v rigid-body states of rims: velocities
in W rigid-body states of rims: angular velocities

100

in mode job control
...0 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have not yet been
accepted by external integrator
..1 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have been accepted by
external integrator
...2 unconditionally (re-)calculate tire forces
...3 calculate steady-state tire forces
...4 calculate static tire forces, avgd. road
...5 calculate static tire forces, enhanced accuracy, avgd. road
...6 calculate static tire forces, time-/location-dependent road
...9 reset (prepare for next time loop w/o closing tire handle)
..k. compute steady states first, if not yet done (only in dynamic case); repeat
this in the first k>0 dynamic steps
.1.. extrapolate forces/moments to next time step (only in dynamic case), for
use if calling solver is to run in parallel with CTI
0... enable multi-threading
1... disable multi-threading
out £ forces acting on rim centers [N]
out m moments acting on rim centers [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

2 no license

101

4.2.2. ctiComputeForcesListMT

Compute forces for list of tire instances in multi-threaded mode.
Prototype:

void ctiComputeForcesListMT (int nthl, int th1l[], double t, double r[][3], double a[]l[9], double

v[]1[3], double w[][3], int mode, intx ier);

Parameters:
in nthl number of tire instances
in thl list of tire handles
in t simulation time [s]
in T rigid-body states of rims: position of rim centers in global coordinates
in a rigid-body states of rims: transformation matrices 'rim-fixed to global’
in v rigid-body states of rims: velocity of rim centers in global coordinates
in W rigid-body states of rims: angular velocity of rims in global coordinates

102

in mode job control
...0 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have not yet been
accepted by external integrator
..1 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have been accepted by
external integrator
...2 unconditionally (re-)calculate tire forces
...3 calculate steady-state tire forces
...4 calculate static tire forces, avgd. road
...5 calculate static tire forces, enhanced accuracy, avgd. road
...6 calculate static tire forces, time-/loc-dependent road
..1. compute steady states first, if not yet done (only in dynamic case)
.1.. extrapolate forces/moments to next time step (only in dynamic case), for
use if calling solver is to run in parallel with CTI
0... enable multi-threading
1... disable multi-threading
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

2 no license

4.2.3. ctiComputeForcesMT

Compute forces in multi-threading mode.

Prototype:

103

void ctiComputeForcesMT (int th, double t, double r[], double al[l, double v[], double wl[],

int mode, intx ier);

Parameters:
in th tire handle
in t simulation time [s]
in T rigid-body state of rim r = position of rim center in global coordinates [m]
in a rigid-body state of rim: 3x3 orthogonal transformation matrix A from rim-fixed
frame to global coordinates. Vectors in rim-fixed frame are to be multiplied by a
0
to result in the representation in global coordinates. Example: A- | 1 | =
0
second column of A = direction vector of wheel spinning axis in global
coordinates.
Note: A is stored column-wise (like in Matlab and Fortran, but not in C or C++),
A = [Aq1, Ao1, Asy, Avg, Agg, Asg, Ays, Ags, Ass)
in v rigid-body state of rim v = translational velocity of rim center in global
coordinates: v = “Lr [m/s]
in W rigid-body state of rim w = angular velocity vector of rim relative to global
coordinates, represented in global coordinates [rad/s]
in mode job control

0 calculate (if not yet available) or return (if available) dynamic tire forces.

simulation time t have not yet been accepted by external integrator

1 calculate (if not yet available) or return (if available) dynamic tire forces.

simulation time T have been accepted by external integrator
2 (re-)calculate tire forces regardless on previous success of external integrator
3 calculate steady-state tire forces
4 calculate static tire forces
10 like 0, compute steady states first, if not yet done

11 like 1, compute steady states first, if not yet done

104

out ier error code
0 ok

1 error occurred (error message was written to log)

4.2.4. ctiComputeForcesOnWCarrierList

Alternative main routine, coupling the tire model to wheel carrier instead of rim. Compute forces for list of tire
instances in multi-threaded mode.

Prototype:

void ctiComputeForcesOnWCarrierList (int nthl, int thl[], double t, double r[][3], double a[][9],

double v[][3], double w[][3], double tdr[], double tbr[], int mode, double f[][3], double m[][3],

intx* ier);
Parameters:
in nthl number of tire instances
in thl list of tire handles
in t simulation time [s]
in T rigid-body states of rims: positions
in a rigid-body states of rims: orientations
in v rigid-body states of rims: velocities
in W rigid-body states of rims: angular velocities
in tdr drive/brake torque
in tbr drive/brake torque

105

in mode job control
...0 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have not yet been
accepted by external integrator
..1 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have been accepted by
external integrator
...2 unconditionally (re-)calculate tire forces
...3 calculate steady-state tire forces
...4 calculate static tire forces, avgd. road
...5 calculate static tire forces, enhanced accuracy, avgd. road
...6 calculate static tire forces, time-/loc-dependent road
..1. compute steady states first, if not yet done (only in dynamic case)
.1.. extrapolate forces/moments to next time step (only in dynamic case), for
use if calling solver is to run in parallel with CTI
0... enable multi-threading
1... disable multi-threading
out f forces acting on rim centers [N]
out m moments acting on rim centers [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

2 no license

106

4.2.5. ctiComputeForcesOnWCarrierMT

Alternative routine, coupling the tire model to wheel carrier instead of rim. Compute forces in multi-threaded
mode.

Prototype:

void ctiComputeForcesOnWCarrierMT (int th, double t, double r[], double a[], double v[], double

w[], double tdr, double tbr, int mode, intx ier);

Parameters:

in th tire handle

in t simulation time

in T rigid-body state of wheel carrier r = position of wheel carrier in global

coordinates [m]

in a rigid-body state of wheel carrier: 3x3 orthogonal transformation matrix A from
rim-fixed frame to global coordinates. Vectors in rim-fixed frame are to be

multiplied by a to result in the representation in global coordinates. Example:
0

A-| 1 | = second column of A = direction vector of wheel spinning axis in

0
global coordinates.

Note: A is stored column-wise (like in Matlab and Fortran, but not in C or C++),

A= [A117 A21; A31; A127 A227 A32; A13; A23; A33]

in v rigid-body state of wheel carrier v = translational velocity of wheel carrier in

global coordinates: v = <Ly [m/s]

in W rigid-body state of wheel carrier w = angular velocity vector of wheel carrier

relative to global coordinates, represented in global coordinates [rad/s]

in tdr drive torque as put out by the drive-train model. Only scalar component in
direction of spindle. The calling program will have to take care that the reaction

torque of tdr is applied to the appropriate part of the drive-train model [Nm]

in tbr brake torque as put out by the brake model. Only scalar component in direction
of spindle. tbr is understood to be the maximum absolute brake torque which is
in effect when the wheel is rolling. The tire model will compute and apply the
effective brake torque. This will be negative when the wheel is rolling backward,
and have smaller absolute value when the wheel rotation is locked. The calling
program does not need to compute any reaction torque. In contrast to tdr, CTI

treats tbr as an inner torque, acting between rim and wheel carrier [Nm]

107

in mode job control

0 calculate (if not yet available) or return (if available) dynamic tire forces.

simulation time t have not yet been accepted by external integrator

1 calculate (if not yet available) or return (if available) dynamic tire forces.

simulation time T have been accepted by external integrator
2 (re-)calculate tire forces regardless on previous success of external integrator
3 calculate steady-state tire forces
4 calculate static tire forces
10 like 0, compute steady states first, if not yet done

11 like 1, compute steady states first, if not yet done

out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

4.2.6. ctiComputeForcesWithOutputArrayList

Compute forces and outputs for list of tire instances in multi-threaded mode
Prototype:

void ctiComputeForcesWithOutputArrayList (int nthl, int thl[], double t, double r[][3], double
al[][9], double v[][3], double w[][3], int mode, double f[][3], double m[][3], int outmode,

int outdim, double* out[], intx ier);

Parameters:
in nthl number of tire instances
in thl list of tire handles
in t simulation time [s]
in T rigid-body states of rims: positions
in a rigid-body states of rims: orientations

108

rigid-body states of rims: velocities

rigid-body states of rims: angular velocities

mode

job control

...0 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have not yet been

accepted by external integrator

..1 calculate (if not yet available) or return (if available) dynamic tire forces.
Values of system states at actual simulation time t have been accepted by

external integrator
...2 unconditionally (re-)calculate tire forces
...3 calculate steady-state tire forces
...4 calculate static tire forces, avgd. road
...5 calculate static tire forces, enhanced accuracy, avgd. road
...6 calculate static tire forces, time-/location-dependent road
...9 reset (prepare for next time loop w/o closing tire handle)

..k. compute steady states first, if not yet done (only in dynamic case); repeat

this in the first k>0 dynamic steps

.1.. extrapolate forces/moments to next time step (only in dynamic case), for

use if calling solver is to run in parallel with CTI
0... enable multi-threading

1... disable multi-threading

out

forces acting on rim centers [N]

out

moments acting on rim centers [Nm]

109

in outmode output mode

0 Using TYDEX-conform output signals

1 Using TYDEX-subset output signals

2 Using dSPACE-ASM-solver output signals

3 Using dSPACE-SCALEXIO-solver output signals

in outdim output dimension for every vector in out []
out out output values (every vector in out [] needs memory for at least outdim values)
out ier error code

0 ok

1 error occurred (error message was written to log). Simulation should be

aborted

2 no license

4.2.7. ctiGetForcesListMT

Get forces for list of tire instances in multi-threading mode.
Prototype:

void ctiGetForcesListMT (int nthl, int thl[], double f[][3], double m[][3], intx ier);

Parameters:
in nthl number of tire instances
in thl list of tire handles
out £ forces acting on rim centers [N]
out m moments acting on rim centers [Nm]
out ier error code

0 ok

1 error occurred (error message was written to log). Simulation should be aborted

110

4.2.8. ctiGetForcesMT

Get forces in multi-threading mode.

Prototype:

void ctiGetForcesMT (int

th, double f[], double m[], intx ier);

Parameters:
in th tire handle
out f force acting on wheel carrier (point of attack = wheel center), expressed in global
coordinates [N]
out m moment acting on wheel carrier, expressed in global coordinates [Nm]
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be aborted

4.2.9. ctiReadStatesMemoryList

State array in (read from memory) for list of tire instances in multi-threaded mode.

Prototype:

void ctiReadStatesMemoryList (int nthl, int thl[], int mode, int memsize[], double* mem[],

int* ier);
Parameters:
in nthl number of tire instances
in thl list of tire handles
in mode mode flag
0 write all states and output values
1 write all states
in memsize list of sizes of memory blocks mem. Use ctiGetArraySize (flag = 10+mode) to
obtain the CTI state array size for declaration or allocation of the memory block
'mem’.
out mem list of memory blocks to restore the states

111

out ier error code

0 ok

1 error: memsize==NULL or mem==NULL

4.2.10. ctiWriteStatesMemoryList

State array out (write to memory) for list of tire instances in multi-threaded mode.
Prototype:

void ctiWriteStatesMemoryList (int nthl, int thl[], int mode, int memsize[], double* mem[],

int* ier);
Parameters:
in nthl number of tire instances
in thl list of tire handles
in mode mode flag
0 write all states and output values
1 write all states
in memsize list of sizes of memory blocks mem. Use ctiGetArraySize (flag = 10+mode) to
obtain the CTI state array size for declaration or allocation of the memory block
'mem’”.
Note: if memsize==NULL, 'memsize’ info from ctiSetStatesMemory is used
out mem list of memory blocks to store the states
Note: if mem==NULL, mem info from ctiSetStatesMemory is used
out ier error code
0 ok

112

5. CTI Dynamic Library Wrapper

Your program’s install path

cosin install path : $COSIN_PREFIX

CTl is dynamically loaded
and symbols are mapped to
local functions compiled
into your main program by
the ctidl wrapper

#include "$COSIN PREFIX/include/cti.h"

Your program'’s user settings

Path to CTI library (SCOSIN_PREFIX)

Call once ctidlInit on init ctidl.c of the

to connect CTI from R Ak s
e FTire Version

selectable cosin install path

call ctidlInit() ctidlInit()

call ctiFunctionl () ctiFunctionl ()

— ctiFunctionl ()

call ctiFunction2 () ctiFunction2 () ctiFunction2 ()

Do not make modifications to
the distribution files or cosin
install tree structure as this will
break compatibility with future
versions.

Figure 1: Using CTI wrapper in external program to load CTI functions at runtime

The CTI dynamic library wrappers are stored in a single C file

<cosin-install-folder>/interface/cti/ctidl.c

licensed under the MIT License to freely compile it to your program. It contains for every CTI function a
wrapper coupling the corresponding CTI shared library function. To use the wrapper an initialization function
ctidlInit needs to be called first in your program. The main information required by the wrapper initialization
is the current cosin installation folder, the easiest way to get this folder is to call ctidlGetCosinInstallFolder.
The finalization function ctid1lClose is per default called via atexit but can also be called be the user if intended.
The above folder <cosin-install-folder> /interface/cti/ contains a few demo files where all of them using the

ctidl.c wrappers *.

E.g. gcc -o ctiDemo -1../../include ctiDemo.c ctidl.c OR cl.exe -FectiDemo.exe -I../../include ctiDemo.c ctidl.c

113

5.1. API Function Reference

5.1.1. ctidlClose

Finalize dynamic library wrappers.

Prototype:

void ctidlClose (void);

Parameters:

none

5.1.2. ctidlGetCosinGuiPath

Get cosin/tools exectuable path.

Prototype:

void ctidlGetCosinGuiPath (char* buf, int size, int* ier);

Parameters:
in buf buffer to store the cosin/tools path
in size size, in bytes, of the array referenced by 'buf’
out ier error code
0 ok

1 could not get cosin installation folder

5.1.3. ctidlGetCosinInstallFolder

Get cosin installation folder.

Prototype:

void ctidlGetCosinInstallFolder (char* buf, int size, int* ier);

Parameters:
in buf buffer to store the cosin installation folder
in size size, in bytes, of the array referenced by 'buf’

114

out ier error code

0 ok

1 could not found home directory
2 could not found/open any ini file

3 install folder tag not found in ini file

Note: A valid COSIN_PREFIX environment variable has priority over the setting specified in the cosin ini file!

5.1.4. ctidlGetTireDataFileName

Get file name of tire data file from a cti file.
Prototype:

void ctidlGetTireDataFileName (int th, char* cti_file, char* tire_file, int size, int* ier);

Parameters:
in th tire handle for which tire data file name is to be provided
in cti_file cti file (file name extension .cti)
out tire_file tire data file name
in size size, in bytes, of the array referenced by 'tire file’
out ier error code

0 ok

1 could not get the tire date file

5.1.5. ctidlInit

Initialize dynamic library wrappers.
Prototype:
void ctidlInit (CTIDLINITxparam, intxier);

Parameters:

115

in param parameter structure of typedef CTIDLINIT

Note: use CTIDLINIT_INITIALIZER to initalize this structure.

out ier error code

0 ok

1 could not open cti shared library

2 at least one symbol is mssing in the CTI shared library.
Notes:

e a list with all missing symbols will be printed if param->message_func is

specified.

e using missing symbols can lead to undefined behavior

5.1.6. ctidlOpenCosinGui

Open cosin/tools.

Prototype:

void ctidlOpenCosinGui (void);
Parameters:

none

5.1.7. ctidlOpenRoadGui

Open the cosin road GUI with the given road file.
Prototype:
void ctidlOpenRoadGui (char* road_file);

Parameters:

in road_file full path to road file

116

5.1.8. ctidlOpenTireGui

Open the cosin tire GUI with the given tire file.
Prototype:
void ctidlOpenTireGui (char* tire_file);

Parameters:

in tire_file full path to tire file

5.2. API Type Definition Reference
5.2.1. typedef CTIDLINIT

Parameter structure for ctidlInit:

typedef struct { UMSGF message_func; int init_mode; int close_mode; char cosin_install_folder[256];}

CTIDLINIT;

Note: Use CTIDLINIT_INITIALIZER macro to initialize this structure.

Members:
message_func message output callback function of typedef UMSGF. If specified, FTire will call
this function to pass messages to the calling application.
close_mode close mode
0 ctidlClose call will be registered via atexit, no manual call of ctidlClose
necessary (default)
1 user has to call ctidliClose manually
init_mode init mode
e 0 load ALL cti shared library functions (default)
cosin_install_folder cosin installation folder. Current working directory is used by default, if string is
void

117

6. CTIl/server Client Interface (CTICLI)

6.1. Program Structure of CTICLI Applications
The CTlI client APl (CTICLI) provides command redirection to a remote CTl/server. No computation is done on
the local machine, all requests are forwarded to the server.

CTICLI aims to provide equivalent calls for every CTI function call. However, not every CTI call can map to a
CTICLI function by concept (e.g. animation). On the other hand, CTICLI provides additional calls, having no
equivalents in CTI, for example for CTl/server administration. A comparison table of CTI and CTICLI is given

in6.3.
CTICLI can be used in two different ways:

e by calling the standard CTI functions and an addtional call to ctiConnectToServer in the CTl initialization

phase (see6.2)
e by replacing the CTI functions with their respective CTICLI equivalents in the user code.

Fig.2 shows an application using a CTICLI library to forward CTI calls to a remote CTl/server.

Client computer

Client
application

cosin licensing

Figure 2: Call to CTl/server using dynamically linked CTICLI library

The CTICLI library can be compiled and linked statically with the calling application (Fig.3), e.g. in a HiL

environment. CTICLI is available as source code on request.

118

Client
computer

Client
application

library

Network

cosin licensing

Figure 3: Call to CTl/server using statically linked CTICLI library

6.2. CTl / CTICLI gateway

CTICLI functionality is included with the CTI library. The calling application can connect to a CTl/server using
the ctiConnectToServer function call (see3.4.1). All subsequent calls to CTI functions will be redirected to the

CTl/server.

Note The calling application has to check error return codes very carefully. If the server connection fails, all

subsequent CTI calls will we handled by the local CTI library.

Fig.4 shows an application calling a local CTI library.

Client computer

Client
application

CTI library

cosin licensing

Figure 4: Call to local CTI library

After connecting to the target CTl/server, all computation is done on the remote host.

119

Client computer

Client
application

CTl/server
application

cTicL
gateway

v

cosin licensing

Figure 5: Call to a CTl/server using the CTI gateway

6.3. CTICLI Function Coverage

The CTICLI functions are classified into:

6.3.1. Client handles

Client handles are unique identifiers of the current client. The client handles are freely definable by the user (also

negative values are allowed).

6.3.2. CTICLI functions with a corresponding CTI function and identical parameter list

The parameter lists of the CTICLI functions in this class are identical to the CTI function, e.g.

CTICLI Prototype

CTI Prototype

int cticliCloseTire (int ch, int th);

void ctiCloseTire (int th);

int cticliVerbose (int ch, int th, int v);

void ctiVerbose (int th, int v);

except the leading client handle 'int ch’ parameter and the error code return for the CTICLI function:

CTICLI Function TCP| UDP| Associated CTI Function Remarks
Sup-| Sup-
port | port

cticliAdjustTwinTireWheelSpeed X ctiAdjustTwinTireWheelSpeed

cticliClose X X ctiClose

120

cticliCloseTire

ctiCloseTire

cticliComputeForces

ctiComputeForces

cticliComputeForcesList

ctiComputeForcesList

UDP support is
restricted to 4 tires
because of UDP

packet size

cticliComputeForcesListMT

ctiComputeForcesListMT

UDP support is
restricted to 4 tires
because of UDP

packet size

cticliComputeForcesOnCarBody

ctiComputeForcesOnCarBody

cticliComputeForcesOnWCarrierList

ctiComputeForcesOnWCarrierList

cticliComputeForcesOnWheelCarrier

ctiComputeForcesOnWheelCarrier

cticliComputeForcesWithOutputArra

yList

ctiComputeForcesWithOutputArraylList

UDP support is
restricted to 4 tires
because of UDP

packet size

cticliEvaluateRoadCourse

ctiEvaluateRoadCourse

cticliEvaluateRoadHeight

ctiEvaluateRoadHeight

cticliFindOutputSignalNumber

ctiFindOutputSignalNumber

cticliGetContactBodyForces

ctiGetContactBodyForces

cticliGetNodePositions

ctiGetNodePositionsWithAttributes

cticliGetOutputSignalNumber

ctiGetOutputSignalNumber

cticliGetPlotSignal ctiGetPlotSignal
cticliGetRimForces ctiGetRimForces
cticliGetRimProperties ctiGetRimProperties

cticliGetRimRotationStates

ctiGetRimRotationStates

cticliGetRoadForces

ctiGetRoadForces

cticliGetRoadParameters

ctiGetRoadParameters

cticliGetRoadSize

ctiGetRoadSize

cticliGetStepSize

ctiGetStatus

cticliGetTireDimensionData

ctiGetTireDimensionData

cticliGetTireDimensionStringData

ctiGetTireDimensionStringData

cticliGetTireHandle

ctiGetTireHandle

121

cticliGetTirelInstance ctiGetTireInstance
cticliGetTireKeyData ctiGetTireKeyData
cticliGetTireModelType ctiGetTireModelType

cticliGetTireProperties

ctiGetTireProperties

cticliGetTreadStates ctiGetTreadStates

cticliGetTydexSignals ctiGetTydexSignals UDP support is
restricted to 60
values because of
UDP packet size.

cticliLinearize ctilinearize

cticlilLinearizeWheelCarrier

ctilLinearizeWheelCarrier

cticliModifyFriction

ctiModifyFriction

cticliOpenQOutputFile

ctiOpenOutputFile

cticliReadOperatingConditions

ctiReadOperatingConditions

cticliReadStates

ctiReadStates

cticliRecorder

ctiRecorder

Output file has to
be downloaded at

simulation end

cticliSaveRecordedForcesMoments

ctiSaveRecordedForcesMoments

Output file has to
be downloaded at

simulation end

cticliSetAffinity

ctiSetAffinity

cticliSetAmbientTemperature

ctiSetAmbientTemperature

cticliSetAnimationStepSize

ctiSetAnimationStepSize

cticliSetContactBodyMotionData

ctiSetContactBodyMotionData

cticliSetDesignParameter

ctiSetDesignParameter

cticliSetInflationPressure

ctiSetDrumTorque

cticliSetInitialTemperature

ctiSetInitialRimAngle

cticliSetInitialTireTemperatures

ctiSetInitialTireTemperatures

cticliSetIntegerRoadParameter

ctiSetIntegerRoadParameter

cticliSetMultiThreadedCallFlag

ctiSetMultiThreadedCallFlag

cticliSetOutputStepSize

ctiSetOutputFilePrefix

cticliSetRoadMotionData

ctiSetRoadMotionData

cticliSetRoadParameters

ctiSetRoadParameters

122

cticliSetRoadTemperature X ctiSetRoadTemperature

cticliSetRunTimeMode X X ctiSetRunTimeMode

cticliSetTimeConstantForces X ctiSetTimeConstantForces

cticliSetTireSide X ctiSetTireSide

cticliSetTreadDepth X ctiSetTreadDepth

cticliSetWheelCenterRefPosition X ctiSetWheelCenterRefPosition

cticliUpdateWheelEnvelope X ctiUpdateWheelEnvelope

cticliVerbose X ctiVerbose

cticliWriteAdditionalOutput X ctiWriteAdditionalQutput Output file has to
be downloaded at
simulation end

cticliWriteStates X ctiWWriteStates

cticliWriteWheelEnvelope X ctiWriteWheelEnvelope Output file has to

be downloaded at

simulation end

6.3.3. CTICLI functions with a corresponding CTI function and different parameter list

CTICLI Function TCP| UDP| Associated CTI Function Remarks
Sup-| Sup-
port| port
cticliInit X X ctiInit
cticliLoadRimData X X ctilLoadRimData
cticliLoadRoadData X X ctiLoadRoadData
cticliLoadSuspensionData X X ctiLoadSuspensionData
cticlilLoadTireData X X ctiloadTireData
cticliGetForcesListMT X X ctiGetForcesListMT UDP version is

restricted to 4 tires
because of UDP

packet size

6.3.4. CTICLI functions without a corresponding CTI function

123

CTICLI Function TCP| UDP| Associated CTI Function Remarks
Sup-| Sup-
port | port
cticliDownloadFile X N/A
cticliGetServerStats X N/A
cticlilistFiles X N/A
cticliLoadCtilibrary X N/A
cticliUploadFile X N/A
cticliGetForcesWithOutputArrayListMT X X N/A UDP version is
restricted to 4 tires
because of UDP
packet size
cticliGetLastExecTime X N/A
6.3.5. CTI functions without a corresponding CTICLI function
CTI Function Remarks
ctiAnimate Server side animation not applicable
ctiAnimateOnly Server side animation not applicable
ctiAnimateScene Server side animation not applicable

Deprecated API Function Reference

Server side animation not applicable

ctiCheckLicense

ctiComputeForcesMT

ctiComputeForcesOnWCarrierMT

ctiComputeForcesTimeContinuous

Deprecated API Function Reference

Passing local function pointer is not

side

supported on server

Deprecated API Function Reference

Passing local function pointer is not

side

supported on server

Deprecated API Function Reference

Passing local function pointer is not

side

supported on server

Deprecated API Function Reference

Passing local function pointer is not

side

supported on server

ctiEnableTimeContinuous

124

ctiGetArraySize

ctiGetCosinSoftwareVersion

ctiGetFileName

ctiGetForcesMT

ctiGetInstallationInfo

ctiGetLTIMatrix

ctiGetNumberContinuousStates

ctiGetOutputSignals
ctiKillSolverOnEsc Client disconnection will always end CTI session
Access to dynamic libraries is not applicable on server
ctiLoadRimModel
side
Access to dynamic libraries is not applicable on server
ctiLoadRoadModel
side
Access to dynamic libraries is not applicable on server
ctiLoadSoilModel
side
ctiOpenRoadGui
ctiOpenTireGui
ctiReadLTIMatrices Not supported on server side
ctiReadStatesMemory Server has no access to client memory
ctiReset

ctiSetCompatVersion

ctiSetDiagMode

ctiSetNotify

ctiSetOption

ctiSetTirePPDataFileName

Preprocessing is always written to separate file on server

side

ctiSetRoadEvalPreference

ctiSetStatesMemory

Server has no access to client memory

Deprecated API Function Reference

ctiSetURIM

ctiSetURM

ctiSetUSM

ctiSetVehicleStates

ctiUpdateRoadData

125

ctiWriteLTIMatrices

ctiWriteStatesMemory Server has no access to client memory

ctiWriteStatesMemoryList Server has no access to client memory

6.4. APl Function Reference

Parameters of the CTICLI functions are corresponding to the parameters of the respective CTI function. See
the CTI API documentation (3.3) for a detailed description. CTICLI functions have an additional first parameter

client handle (returned bycticliInit) and an client error code return value.

6.4.1. cticliDownloadFile

Download a file from the server working directory.
Prototype:

int cticliDownloadFile (int ch, char* file, char* outfile);

Parameters:
in ch client handle
in file file to be downloaded from the server working directory
in outfile local output file name

6.4.2. cticliGetServerStats

Get server statistics.
Prototype:

int cticliGetServerStats (int ch, int* ntir, int* nrdf, int* nsusp, int* nrim, int* nctilib,

int* nconnect, int* nmaxclient, int* ncticli, int64_t* nhtml);

Parameters:
in ch client handle
out ntir number of files in the server tire parameter file database
out nrdf number of files in the server road definition database
out nsusp number of files in the server suspension definition database
out nrim number of files in the server rim definition database

126

out nctilib number of files in the server CTI library database
out nconnect number of connections accepted since server startup
out nmaxclient | peak value of clients connected at the same time
out ncticli total number of executed CTl commands

out nhtml total number of delivered administration pages

6.4.3. cticliInit

Initialize CTICLI.

Prototype:

int cticliInit (intxch, CTICLIINITxparam) ;

Parameters:
out ch client handle
in param parameter structure of typedef CTICLIINIT

Note: Use CTICLIINIT_INITIALIZER to initalize this structure.

6.4.4. cticlilistFiles

List files.

Prototype:

int cticlilistFiles (int

ch, intx nfile, charx*x file, int targetdir);

Parameters:
in ch client handle
out nfile number of list items returned
out file file list

Note: Memory for file list is allocated internally. Caller must free memory when

not needed any longer.

127

in targetdir

targetdir value

CTICLI_TARGETDIR_WORKDIR list files from working directory
CTICLI_TARGETDIR_DBTIR list files from tire parameter database
CTICLI_TARGETDIR_DBRDF list files from road parameter database
CTICLI_TARGETDIR_DBCTI list files from cti parameter database
CTICLI_TARGETDIR_DBSUSP list files from suspension parameter database

CTICLI_TARGETDIR_DBRIM list files from rim parameter database

6.4.5. cticliloadCtiLibrary

Load CTI library.
Prototype:

int cticlilLoadCtilLibrary

(int ch, int* ier, charx file, int targetdir);

Parameters:
in ch client handle
out ier exit status
in file File name. Meaning depends oftargetdir. Seetargetdir parameter description for
details.
in targetdir targetdir value

CTICLI_TARGETDIR_WORKDIR Upload filename to working directory. Server

database is not searched

CTICLI_TARGETDIR_DBCTI search file in cti library database. The file is searched

by the basename of the filename passed

CTICLI_TARGETDIR_NATIVE used the filename as specified (UDP only)

6.4.6. cticliLoadRimData

Load rim data.

128

Prototype:

int cticliloadRimData (int ch, int th, int* ier, char* file, int targetdir);

Parameters:
in ch client handle
in th tire handle
out ier exit status
in file File name. Meaning depends oftargetdir. Seetargetdir parameter description for
details.
in targetdir targetdir value

CTICLI_TARGETDIR_WORKDIR Upload filename to working directory. Server

database is not searched

CTICLI_TARGETDIR_DBRIM search file in rim parameter database. The file is

searched by the basename of the filename passed

CTICLI_TARGETDIR_NATIVE used the filename as specified (UDP only)

6.4.7. cticliloadRoadData

Load road data.

Prototype:

int cticliLoadRoadData (int ch, int th, int* ier, charx file, int targetdir);

Parameters:
in ch client handle
in th tire handle
out ier exit status
in file File name. Meaning depends oftargetdir. Seetargetdir parameter description for

details.

129

targetdir

targetdir value

CTICLI_TARGETDIR_WORKDIR Upload filename to working directory. Server

database is not searched

CTICLI_TARGETDIR_DBRDF search file in road parameter database. The file is

searched by the basename of the filename passed

CTICLI_TARGETDIR_NATIVE used the filename as specified (UDP only)

6.4.8. cticliloadSuspensionData

Load suspension data.

Prototype:

int cticliloadSuspensionData (int ch, int th, int* ier, charx file, int targetdir);

Parameters:
in ch client handle
in th tire handle
out ier exit status
in file File name. Meaning depends oftargetdir. Seetargetdir parameter description for
details.
in targetdir targetdir value

CTICLI_TARGETDIR_WORKDIR Upload filename to working directory. Server

database is not searched

CTICLI_TARGETDIR_DBSUSP search file in suspension parameter database. The

file is searched by the basename of the filename passed

CTICLI_TARGETDIR_NATIVE used the filename as specified (UDP only)

6.4.9. cticliloadTireData

Load tire data.

Prototype:

130

int cticliloadTireData (int ch, int th, int* ier, charx file, int targetdir);

Parameters:
in ch client handle
in th tire handle
out ier exit status
in file File name. Meaning depends oftargetdir. Seetargetdir parameter description for
details.
in targetdir targetdir value

CTICLI_TARGETDIR_WORKDIR Upload filename to working directory. Server

database is not searched

CTICLI_TARGETDIR_DBTIR search file in tire parameter database. The file is

searched by the basename of the filename passed

CTICLI_TARGETDIR_NATIVE used the filename as specified (UDP only)

6.4.10. cticliUploadFile

Load CTI library.
Prototype:

int cticliUploadFile (int ch, char* file, char* outfile);

Parameters:
in ch client handle
in file file to be uploaded to the server working directory
in outfile remote output file name

6.4.11. cticliGetForcesListMT

Get forces for list of tire instances in multi-threading mode.
Prototype:

int cticliGetForcesListMT (int ch, int nthl, int thl[], int timeout, double frO[][3], double

trrO[][3], int* ier);

Parameters:

131

in ch client handle

in nthl number of tire instances
in thl list of tire handles
in timeout UDP only:

receive timeout [micro s]

out fro forces acting on rim centers [N]
out trr0 torques acting on rim centers [Nm]
out ier error code

0 ok

1 error occurred (error message was written to log). Simulation should be aborted

6.4.12. cticliGetForcesWithOutputArrayListMT

Get forces and outputs for list of tire instances in multi-threading mode.
Prototype:

int cticliGetForcesWithOutputArrayListMT (int ch, int nthl, int thl[], int timeout, double

frO[]1[3], double trrO[][3], int outmode, int outdim, doublex out[], int* ier);

Parameters:

132

in ch client handle
in nthl number of tire instances
in thl list of tire handles
in timeout UDP only:
receive timeout [micro s]
out fro forces acting on rim center [N]
out trr0 torques acting on rim center [Nm]
in outmode output mode
0 Using TYDEX-conform output signals
1 Using TYDEX-subset output signals
2 Using dSPACE-ASM-solver output signals
3 Using dSPACE-SCALEXIO-solver output signals
in outdim output dimension for every vector in out []
out out output values (every vector in out [] needs memory for at least outdim values)
out ier error code
0 ok

1 error occurred (error message was written to log). Simulation should be aborted

6.4.13. cticliGetLastExecTime

Get last execution time in seconds.

Prototype:

int cticliGetLastExecTime (int ch, double* exec_time);

Parameters:
in ch client handle
out exec_time execution time of last CTICLI functions with a corresponding CTI function and

identical parameter list call

133

6.5. API Type Definition Reference
6.5.1. typedef CTICLICOMMTYPE

Communication enumeration fortypedef CTICLIINIT:

typedef enum cticli_commtype { CTICLI_COMMTYPE_TCP, CTICLI_COMMTYPE_UDP, } CTICLICOMMTYPE;

Enumerators:
CTICLI_COMMTYPE_TCP Using TCP communication (default)
CTICLI_COMMTYPE_UDP Using UDP communication

6.5.2. typedef CTICLIINIT

Parameter structure forcticliInit:

typedef struct { int major_version; CTICLIMSGFUNC message_func; char output_folder[256];
char output_prefix[64]; int calling_solver; int mt_call_flag; CTICLICOMMTYPE comm_type;
int srv_port; char* srv_hostname; int tcp_time_out; int tcp_srv_sock; int udp_cli_port;
int udp_std_time_out; int udp_rt_time_out; int udp_rt_time_out_overrun; int udp_rt_max_overrun;

int init_mode;} CTICLIINIT;

Note: Use CTICLIINIT _INITIALIZER macro to initialize this structure.

Members:
major_version cosin major version.
Note: Do not change this value!
message_func message output callback function oftypedef UMSGF. If specified, FTire will call
this function to pass messages to the calling application.
output_folder directory to save output files to
output_prefix output file prefix
calling_solver calling solver environment
0 unknown (default)
mt_call_flag multi-threaded call flag
0 single-threaded (default)
1 multi-threaded, mandatory if a function from(4) is called

134

comm_type

communication type oftypedef CTICLICOMMTYPE.

srv_port

server port

srv_hostname

server hosthame

tcp_time_out

TCP only:

socket time out

udp_cli_port UDP only:
client port
udp_std_time_out UDP only:

standard time-out (in micro seconds) for cticliUtilUdpRecv calls

udp_rt_time_out

UDP only:

realtime time-out (in micro seconds) for cticliUtilUdpRecv calls

udp_rt_time_out_overrun

UDP only:
realtime time-out (in micro seconds) for cticliUtilUdpRecv calls until

udp_rt_max_overrun is reached

udp_rt_max_overrun

UDP only:

maximum number of allowed overruns during realtime

init_mode

UDP only:
0 standard initialisation (default)

1 re-initialisation while keeping current UDP communication intact

135

A. Additional Tables

A.1. Supported Labels for ctiFindoutputSignalNumber

label [, label-alias (since version) [, ...]]

"error code (0:last integration step is ok)"

"longitudinal slip [%]"

"slip angle [degl"

"tire camber angle [deg]"

"forces in footprint, inertial frame [N] (1)"

"forces in footprint, inertial frame [N] (2)"

"forces in footprint, inertial frame [N] (3)"

"torques in footprint, inertial frame [Nm] (1)"

"torques in footprint, inertial frame [Nm] (2)"

"torques in footprint, inertial frame [Nm] (3)"

"forces in footprint, TYDEX C [N] (1)"

"forces in footprint, TYDEX C [N] (2)"

"forces in footprint, TYDEX C [N] (3)"

"torques in footprint, TYDEX C [Nm] (1)"

"torques in footprint, TYDEX C [Nm] (2)"

"torques in footprint, TYDEX C [Nm] (3)"

"forces in footprint, TYDEX W [N] (1)"

"forces in footprint, TYDEX W [N] (2)"

"forces in footprint, TYDEX W [N] (3)"

"torques in footprint, TYDEX W [Nm] (1)"

"torques in footprint, TYDEX W [Nm] (2)"

"torques in footprint, TYDEX W [Nm] (3)"

"forces in footprint, ISO contact frame [N] (1)"

"forces in footprint, ISO contact frame [N] (2)"

"forces in footprint, ISO contact frame [N] (3)"

"torques in footprint, ISO contact frame [Nm] (1)"

"torques in footprint, ISO contact frame [Nm] (2)"

"torques in footprint, ISO contact frame [Nm] (3)"

"forces on rim, TYDEX C [N] (1)"

"forces on rim, TYDEX C [N] (2)"

"forces on rim, TYDEX C [N] (3)"

"torques on rim, TYDEX C [Nm] (1)"

"torques on rim, TYDEX C [Nm] (2)"

"torques on rim, TYDEX C [Nm] (3)"

"forces on rim, TYDEX W [N] (1)"

"forces on rim, TYDEX W [N] (2)"

"forces on rim, TYDEX W [N] (3)"

"torques on rim, TYDEX W [Nm] (1)"

136

"torques on rim, TYDEX W [Nm] (2)"

"torques on rim, TYDEX W [Nm] (3)"

"forces on rim, TYDEX H [N] (1)"

"forces on rim, TYDEX H [N] (2)"

"forces on rim, TYDEX H [N] (3)"

"torques on rim, TYDEX H [Nm] (1)"

"torques on rim, TYDEX H [Nm] (2)"

"torques on rim, TYDEX H [Nm] (3)"

"forces on rim, ISO contact frame [N] (1)"

"forces on rim,

IS0 contact frame [N] (2)"

"forces on rim, ISO contact frame [N] (3)"

"torques on rim,

IS0 contact frame [Nm] (1)"

"torques

on

rim,

ISO contact frame [Nm] (2)"

"torques

on

rim,

IS0 contact frame [Nm] (3)"

"torques

on

rim,

inertial frame [Nm] (1)"

"torques

on

rim,

inertial frame [Nm] (2)"

"torques on rim,

inertial frame [Nm] (3)"

"forces in cont. bodies, inertial frame [N] (1)"
"forces in cont. bodies, inertial frame [N] (2)"
"forces in cont. bodies, inertial frame [N] (3)"
"forces in cont. bodies, inertial frame [N] (4)"
"forces in cont. bodies, inertial frame [N] (5)"
"forces in cont. bodies, inertial frame [N] (6)"
"forces in cont. bodies, inertial frame [N] (7)"
"forces in cont. bodies, inertial frame [N] (8)"
"forces in cont. bodies, inertial frame [N] (9)"
"forces in cont. bodies, inertial frame [N] (10)"
"forces in cont. bodies, inertial frame [N] (11)"
"forces in cont. bodies, inertial frame [N] (12)"
"forces in cont. bodies, inertial frame [N] (13)"
"forces in cont. bodies, inertial frame [N] (14)"
"forces in cont. bodies, inertial frame [N] (15)"
"forces in cont. bodies, inertial frame [N] (16)"
"forces in cont. bodies, inertial frame [N] (17)"
"forces in cont. bodies, inertial frame [N] (18)"
"forces in cont. bodies, inertial frame [N] (19)"
"forces in cont. bodies, inertial frame [N] (20)"
"forces in cont. bodies, inertial frame [N] (21)"
"forces in cont. bodies, inertial frame [N] (22)"
"forces in cont. bodies, inertial frame [N] (23)"
"forces in cont. bodies, inertial frame [N] (24)"
"forces in cont. bodies, inertial frame [N] (25)"

137

"forces in cont. bodies, inertial frame [N] (26)"

"forces in cont. bodies, inertial frame [N] (27)"

"forces in cont. bodies, inertial frame [N] (28)"

"forces in cont. bodies, inertial frame [N] (29)"

"forces in cont. bodies, inertial frame [N] (30)"

"torques in cont. bodies, inertial frame [Nm] (1)"

"torques in cont. bodies, inertial frame [Nm] (2)"

"torques in cont. bodies, inertial frame [Nm] (3)"

"torques in cont. bodies, inertial frame [Nm] (4)"

"torques in cont. bodies, inertial frame [Nm] (5)"

"torques in cont. bodies, inertial frame [Nm] (6)"

"torques in cont. bodies, inertial frame [Nm] (7)"

"torques in cont. bodies, inertial frame [Nm] (8)"

"torques in cont. bodies, inertial frame [Nm] (9)"

"torques in cont. bodies, inertial frame [Nm] (10)"

"torques in cont. bodies, inertial frame [Nm] (11)"

"torques in cont. bodies, inertial frame [Nm] (12)"

"torques in cont. bodies, inertial frame [Nm] (13)"

"torques in cont. bodies, inertial frame [Nm] (14)"

"torques in cont. bodies, inertial frame [Nm] (15)"

"torques in cont. bodies, inertial frame [Nm] (16)"

"torques in cont. bodies, inertial frame [Nm] (17)"

"torques in cont. bodies, inertial frame [Nm] (18)"

"torques in cont. bodies, inertial frame [Nm] (19)"

"torques in cont. bodies, inertial frame [Nm] (20)"

"torques in cont. bodies, inertial frame [Nm] (21)"

"torques in cont. bodies, inertial frame [Nm] (22)"

"torques in cont. bodies, inertial frame [Nm] (23)"

"torques in cont. bodies, inertial frame [Nm] (24)"

"torques in cont. bodies, inertial frame [Nm] (25)"

"torques in cont. bodies, inertial frame [Nm] (26)"

"torques in cont. bodies, inertial frame [Nm] (27)"

"torques in cont. bodies, inertial frame [Nm] (28)"

"torques in cont. bodies, inertial frame [Nm] (29)"

"torques in cont. bodies, inertial frame [Nm] (30)"

"mean distance rim center - road [mm]"

"mean absolute height footprint [m]"

"approximate footprint area [m~2]", "approximate footprint area [m~2]" (2018-2)

"accurate length of footprint [mm]"

"accurate width of footprint [mm]"

"air volume [m~3]", "filling gas volume [m~3]" (2020-2)

"air pressure [N/m~2]", "air pressure [bar]" (2016-4), "filling gas pressure [bar]" (2020-2)

138

"air temperature [degK]", "temperature [degCl" (2016-4), "filling gas temperature [degC]" (2020-2)

"mean tread temperature [degK]", "mean tread temperature [degC]l" (2016-4)

"mean contact patch temperature [degK]", "mean contact patch temperature [degC]l" (2016-4)

"actual relative belt extemsion [%]"

"maximum ground pressure in footprint [MPa]"

"mean ground pressure in footprint [MPa]l"

"ground pressure RMS in footprint [MPa]", "ground pressure std .dev. in footprint [MPal]" (2018-2),

"ground pressure std. dev. in footprint [MPal" (2020-4)

"mean longit. long-waved curv. of road prof. [1/m]"

"global tire deflection [mm]"

"global tire deflection velocity [m/s]"

"loaded radius [mm]"

"maximum radial belt element displacement [mm]"

"belt-to-rim torsion about wheel spin axis [degl"

"actual pneumatic trail [mm]"

"actual pneumatic scrub [mm]"

"approx. footprint center [m] (1)", "approx. footprint center in global coord. [m] (1)" (2018-2)

"approx. footprint center [m] (2)", "approx. footprint center in global coord. [m] (2)" (2018-2)

"approx. footprint center [m] (3)", "approx. footprint center in global coord. [m] (3)" (2018-2)

"assumed footprint center [m] (1)", "assumed footprint center in global coord. [m] (1)" (2018-2)

"assumed footprint center [m] (2)", "assumed footprint center in global coord. [m] (2)" (2018-2)

"assumed footprint center [m] (3)", "assumed footprint center in global coord. [m] (3)" (2018-2)

"road friction factor in approx. fp. center [-]"

"gyroscopic overturning moment [Nm]"

"gyroscopic aligning moment [Nm]"

"longitudinal rim center velocity [m/s]"

"lateral rim center velocity [m/s]"

"vertical rim center velocity [m/s]"

"longitudinal slip velocity at contact point [m/s]"

"lateral slip velocity at contact point [m/s]"

"contact patch bore velocity [rad/s]"

"footprint area cg, expr. in contact frame [mm] (1)"

"footprint area cg, expr. in contact frame [mm] (2)"

"footprint area cg, expr. in contact frame [mm] (3)"

"x-shift of belt above footprint [mm]"

"y-shift of belt above footprint [mm]"

"torsion of belt above footprint [deg]"

"bending of belt above footprint [1/m]"

"long. geometrical shift of footprint [mm]"

"flag whether rim contacts / penetrates road [-]"

"transf. m. to wheel frame (TYDEX C) (1)"

"transf. m. to wheel frame (TYDEX C) (2)"

139

"transf. m. to wheel frame (TYDEX C) (3)"

"transf. m. to wheel frame (TYDEX C) (4)"

"transf. m. to wheel frame (TYDEX C) (5)"

"transf. m. to wheel frame (TYDEX C) (6)"

"transf. m. to wheel frame (TYDEX C) (7)"

"transf. m. to wheel frame (TYDEX C) (8)"

"transf. m. to wheel frame (TYDEX C) (9)"

"transf. m. to road contact frame (TYDEX W) (1)"

"transf. m. to road contact frame (TYDEX W) (2)"

"transf. m. to road contact frame (TYDEX W) (3)"

"transf. m. to road contact frame (TYDEX W) (4)"

"transf. m. to road contact frame (TYDEX W) (5)"

"transf. m. to road contact frame (TYDEX W) (6)"

"transf. m. to road contact frame (TYDEX W) (7)"

"transf. m. to road contact frame (TYDEX W) (8)"

"transf. m. to road contact frame (TYDEX W) (9)"

"transf. m. to ISO 8855 axis system (1)"

"transf. m. to ISO 8855 axis system (2)"

"transf. m. to ISO 8855 axis system (3)"

"transf. m. to ISO 8855 axis system (4)"

"transf. m. to ISO 8855 axis system (5)"

"transf. m. to ISO 8855 axis system (6)"

"transf. m. to ISO 8855 axis system (7)"

"transf. m. to ISO 8855 axis system (8)"

"transf. m. to ISO 8855 axis system (9)"

"longitudinal rim displacement [mm]"

"lateral rim displacement [mm]"

"rim toe angle [deg]l"

"rim angular acceleration [deg/s~2]", "rim angular accel. about spin axis [deg/s~2]" (2017-2)

"road motion states [-] (1)"

"road motion states [-] (2)"

"road motion states [-] (3)"

"road motion states [-] (4)"

"road motion states [-] (5)"

"road motion states [-] (6)"

"road motion states [-] (7)"

"road motion states [-] (8)"

"road motion states [-] (9"

"road motion states [-] (10)"

"road motion states [-] (11)"

"road motion states [-] (12)"

"force/moment standard deviations [N],[Nm] (1)"

140

"force/moment standard deviatiomns [N],[Nm] (2)"

"force/moment standard deviations [N],[Nm] (3)"

"force/moment standard deviations [N],[Nm] (4)"

"force/moment standard deviations [N],[Nm] (5)"

"force/moment standard deviations [N],[Nm] (6)"

max. normal tread block deflection [mm]"

"total power loss in tread [kW]"

"total power loss in plies [kW]"

"total power loss by friction [kW]"

"total power loss [kW]"

"rolling loss [N]"

"dynamic rolling radius [mm]", "actual estimated dynamic rolling radius [mm]" (2018-4)

"total ply-steer moment [Nm]"

"maximum sliding velocity in footprint [m/s]"

"mean sliding velocity in footprint [m/s]"

"sliding velocity RMS in footprint [m/s]",

"sliding velocity std. dev. in footprint [m/s]" (2018-2)

"maximum belt-to-rim contact intrusion [mm]"

"maximum side-wall-to-road intrusion [mm]", "maximum sidewall-to-road intrusion [mm]" (2020-1)

"maximum rim-to-road intrusion [mm]"

"rim-flange-to-road contact force [N] (1)"

"rim-flange-to-road contact force [N] (2)"

"rim-flange-to-road contact force [N] (3)"

"max. elastic left rim flange rad. displ. [mm]"

max. elastic right rim flange rad. displ. [mm]"

"max. plastic left rim flange rad. def. [mm]"

max. plastic right rim flange rad. def. [mm]"

max. elastic left rim flange lat. displ. [mm]"

"max. elastic right rim flange lat. displ. [mm]"

max. plastic left rim flange lat. def. [mm]"

"max. plastic right rim flange lat. def. [mm]"

"gas-vibration-induced rim force [N] (1)", "gas-vibration-induced rim force (p) [N] (1)" (2018-4)

"gas-vibration-induced rim force [N] (2)", "gas-vibration-induced rim force (p) [N] (2)" (2018-4)

"gas-vibration-induced rim force [N] (3)", "gas-vibration-induced rim force (p) [N] (3)" (2018-4)

"mean circumferential filling gas velocity [m/s]"

"circumferential filling gas vel. variation [m/s]"

"filling gas pressure variation [bar]"

"min z component [m]"

"min required contact processor bound [/]"

"relative circumf. coord. of lowest segment [-]"

"cleat contact flag [-]", "cleat contact phase [-]" (2017-2)

"act. total tire mass geom.

[m], [kgl, [kgm~2] (1)"

"act. total tire mass geom.

[m], [kgl, [kgm~2] (2)"

141

act. total tire mass geom. [m], [kgl, [kgm~2] (3)"

act. total tire mass geom. [m],[kgl,[kgm~2] (4)"

"act. total tire mass geom. [m], [kgl, [kgm~2] (5)"

act. total tire mass geom. [m], [kgl, [kgm~2] (6)"

"act. total tire mass geom. [m], [kgl, [kgm~2] (7)"

act. total tire mass geom. [m], [kg], [kgm~2] (8)"

act. total tire mass geom. [m], [kg], [kgm~2] (9)"

"act. total tire mass geom. [m], [kgl, [kgm~2] (10)"

"perc. belt mass variation at lowest segm. [%]"
"weight 1st press. value in friction char. [-]"
"weight 2nd press. value in friction char. [-]"
"weight 3rd press. value in friction char. [-]"

"total RTF factor,

w/o communication [-]"

"first partial RTF factor [-]", "contact processor RTF [-]1" (2021-2)

"second partial RTF factor [-]", "belt structure forces RTF [-]" (2021-2)

"third partial RTF factor [-]", "implicit integration solver RTF [-1" (2021-2)

"communication overhead RTF factor [-]"

"relative size of sliding area [%]"

"total contact patch shear stiffness [N/m]"

"total contact patch shear damping [Ns/m]"

"number of contact patch boundary nodes [-]"

"number of tread blocks with contact [-]"

"number of tread blocks close to contact [-]"

"forces on rim, inertial frame [Nm] (1)"

"forces on rim, inertial frame [Nm] (2)"

"forces on rim, inertial frame [Nm] (3)"

"air pressure [bar]", "filling gas pressure [bar]" (2020-2)

"temperature [degC]", "filling gas temperature [degC]" (2020-2)

mean tread temperature [degC]l"

"mean contact patch temperature [degC]"

mean contact patch temperature near zenith [degCl"

"TPMS sensor signal pressure [bar]"

"TPMS sensor signal temperature [degC]"

"TPMS sensor-fixed transl. accel. [m/s~2] (1)"

"TPMS sensor-fixed transl. accel. [m/s~2] (2)"

"TPMS sensor-fixed transl. accel. [m/s~2] (3)"

"TPMS sensor-fixed rot. accel. [rad/s~2] (1)"

"TPMS sensor-fixed rot. accel. [rad/s~2] (2)"

"TPMS sensor-fixed rot. accel. [rad/s~2] (3)"

"TPMS location curvature radius longitudinal [mm]"

"TPMS location curvature radius lateral [mm]"

"TPMS sensor distance to wheel center [mm]"

142

"weight sticking velocity in friction char. [-]"

"weight max. frict. velocity in friction char. [-]"

"weight sliding velocity in friction char. [-]"

"weight blocking velocity in friction char. [-]"

"road type [-1"

"road-type specific extra output [div] (1)"

"road-type specific extra output [div] (2)"

"road-type specific extra output [div] (3)"

"road-type specific extra output [div] (4)"

"road-type specific extra output [div] (5)"

"road-type specific extra output [div] (6)"

"road-type specific extra output [div] (7)"

"road-type specific extra output [div] (8)"

"road-type specific extra output [div] (9)"

"road-type specific extra output [div] (10)"

"rim angular accel. about spin axis [deg/s~2]"

rim transl. acceleration [m/s~2] (1)"

"rim transl. acceleration [m/s~2] (2)"

rim transl. acceleration [m/s~2] (3)"

"rim angular acceleration [rad/s~2] (1)"

rim angular acceleration [rad/s~2] (2)"

rim angular acceleration [rad/s~2] (3)"

"cleat contact phase [-]"

"forces on cleat, inertial frame [Nm] (1)"

"forces on cleat, inertial frame [Nm] (2)"

"forces on cleat, inertial frame [Nm] (3)"

"tread pattern loc. of first cleat cont. [-] (1)"

"tread pattern loc. of first cleat cont. [-] (2)"

"approximate footprint area [m~2]"

"minimum interior cross section area [m~2]"

"ground pressure std .dev. in footprint [MPal",

"ground pressure std. dev. in footprint [MPa]" (2020-4)

"approx. footprint center in global coord. [m] (1)"

"approx. footprint center in global coord. [m] (2)"

"approx. footprint center in global coord. [m] (3)"

"assumed footprint center in global coord. [m] (1)"

"assumed footprint center in global coord. [m] (2)"

"assumed footprint center in global coord. [m] (3)"

"approx. fp center in road-fixed coord. [m] (1)"

"approx. fp center in road-fixed coord. [m] (2)"

"approx. fp center in road-fixed coord. [m] (3)"

"sliding velocity std. dev. in footprint [m/s]"

143

"tire squealing amplitude factor [-]"

"actual rim-to-road contact vertical stiffness [N/m]"

"actual estimated dynamic rolling radius [mm]"

"maximum side-wall stretching defl. left side [mm]"

"maximum side-wall stretching defl. right side [mm]"

"gas-vibration-induced

rim force (p) [N] (1)"

"gas-vibration-induced

rim force (p) [N] (2)"

"gas-vibration-induced

rim force (p) [N] (3)"

"gas-vibration-induced

belt force (p) [NI (1)"

"gas-vibration-induced

belt force (p) [N] (2)"

"gas-vibration-induced

belt force (p) [N] (3)"

"gas-vibration-induced

rim force (v) [N] (1)"

"gas-vibration-induced

rim force (v) [N] (2)"

"gas-vibration-induced

rim force (v) [N] (3)"

"approx. fp height, if

road data not protected

[m] "

"road surface velocity

[m/s] ()"

"road surface velocity

[m/s] (2)"

"road surface velocity

[m/s] (3)"

"maximum sidewall-to-road intrusion [mm]"

"maximum sidewall stretching defl. left side [mm]"

"maximum side-wall stretching defl. left side [mm]",

"maximum sidewall stretching defl. left side [mm]" (2020-1)

"maximum sidewall stretching defl. right side [mm]"

"maximum side-wall stretching defl. right side [mm]",

"maximum sidewall stretching defl. right side [mm]" (2020-1)

"weight 1. sliding velocity in friction char. [-]"

"weight max. frict. velocity in friction char. [-]1",
"weight 1. sliding velocity in friction char. [-]" (2020-1)
"weight 2. sliding velocity in friction char. [-]1"

"weight sliding velocity in friction char. [-]",

"weight 2. sliding velocity in friction char. [-]1" (2020-1)
"weight 3. sliding velocity in friction char. [-]"

"weight blocking velocity in friction char. [-]1",

"weight 3. sliding velocity in friction char. [-]" (2020-1)

"filling gas volume [m~3]"

"filling gas mass [kg]"

"filling gas pressure [bar]"

"filling gas temperature [degCl"

"ground pressure std. dev. in footprint [MPa]"

"contact processor RTF

-1

"belt structure forces

RTF [-1"

"implicit integration solver RTF [-]"

144

A.2. Subset of TYDEX Output Signals

In the following, a subset of TYDEX output signals is listed, containing all TYDEX signals defined in ftire__model pdf

(chapter 10) without the signals marked either ,not used” or ,do not use".

Note: This subset is numbered consecutively and uses, due to compression, different numbers as the TYDEX-

conform output signals. For example, tire deflection is signal 28 in this subset and 44 in the TYDEX-conform

complete list. Moreover, certain signals like slip values and 1SO forces appear more than once, since the TYDEX

list of signals is not cleanly standardized, and different applications expect these signals in different locations of

the output array.

signal description unit

1-6 tire forces and torques, expressed in TYDEX W-axis system N, Nm

7 slip angle rad

8 longitudinal slip -

9 camber angle rad

10-12 geometrical center of contact patch in global coordinates m

13-21 3x3 transformation matrix from contact tangential plane to global -
coordinates (storage column-wise)

22-27 tire forces and torques, expressed in ISO axis system N,Nm

28 tire deflection m

29 vertical rim center velocity m/s

30 longitudinal slip velocity at contact point m/s

31 lateral slip velocity at contact point m/s

32 longitudinal rim center velocity m/s

33 maximum belt radius after inflation m

34 rim angular velocity relative to wheel carrier (ABS signal) rad/s

35 mean road friction factor in contact patch -

36 tire deflection mm

37 slip angle deg

38 longitudinal slip %

39-44 tire forces and torques, expressed in TYDEX C-axis system N,Nm

45 rolling loss N

46 maximum belt-to-rim contact intrusion m

47 dynamic rolling radius m

145

48-53

tire forces and torques, expressed in ISO axis system (same as

signals 22-27)

N,Nm

146

Index
ctiAdjustTwinTireWheelSpeed, 6, 120
ctiAnimate, 6, 124

ctiAnimateOnly, 7, 124
ctiAnimateScene, 7, 124
ctiCheckLicense, 8, 124
CTICLICOMMTYPE, 134, 135
cticliDownloadFile, 124, 126

cticliGetForcesListMT, 123, 131

cticliGetForcesWithOutputArrayListMT, 124, 132

cticliGetLastExecTime, 124, 133
cticliGetServerStats, 124, 126
CTICLIINIT, 90, 127, 134

cticlilInit, 123, 126, 127, 134
cticliListFiles, 124, 127
cticliloadCtilibrary, 124, 128
cticliLoadRimData, 123, 128
cticlilLoadRoadData, 123, 129
cticliloadSuspensionData, 123, 130
cticliLoadTireData, 123, 130
cticliUploadFile, 124, 131

ctiClose, 8, 120

ctiCloseTire, 8, 121

ctiComputeForces, 9, 12-15, 60, 121
ctiComputeForcesList, 79, 100, 121
ctiComputeForcesListMT, 102, 121
ctiComputeForcesMT, 103, 124
ctiComputeForcesOnCarBody, 11, 121
ctiComputeForcesOnWCarrierList, 105, 121
ctiComputeForcesOnWCarrierMT, 107, 124
ctiComputeForcesOnWheelCarrier, 12, 121
ctiComputeForcesPosition, 14

ctiComputeForcesTimeContinuous, 14, 124

ctiComputeForcesWithOutputArrayList, 108, 121

147

ctiConnectToServer, 90, 98

ctidlClose, 113, 114, 117
ctidlGetCosinGuiPath, 114
ctidlGetCosinInstallFolder, 113, 114
ctidlGetTireDataFileName, 115

CTIDLINIT, 116, 117

ctidlInit, 113, 115, 117

ctidlOpenCosinGui, 116

ctidlOpenRoadGui, 116

ctidlOpenTireGui, 117
ctiEnableTimeContinuous, 15, 124
ctiEvaluateRoadCourse, 15, 121
ctiEvaluateRoadHeight, 16, 121
ctiFindOutputSignalNumber, vii, 17, 24-26, 121, 136
ctiGetArraySize, 17, 66, 80, 90, 111, 112, 125
ctiGetContactBodyForces, 18, 97, 121
ctiGetCosinSoftwareVersion, 19, 125
ctiGetFileName, 19, 125

ctiGetForcesListMT, 110, 123
ctiGetForcesMT, 111, 125
ctiGetInstallationInfo, 21, 125
ctiGetLTIMatrix, 21, 97, 125
ctiGetNodePositions, 22
ctiGetNodePositionsWithAttributes, 23, 97, 121
ctiGetNumberContinuousStates, 24, 125
ctiGetOutputSignallabel, 24
ctiGetOutputSignalNumber, 17, 25, 26, 97, 121
ctiGetOutputSignals, 25, 125
ctiGetPloptSignal, 26, 97, 121
ctiGetPlotSignals, 31

ctiGetRimForces, 31, 97, 121
ctiGetRimProperties, 31, 97, 121

ctiGetRimRotationStates, 32, 97, 121

ctiGetRoadDependFiles, 32
ctiGetRoadForces, 33, 97, 121
ctiGetRoadParameters, 33, 121
ctiGetRoadProperties, 34
ctiGetRoadSize, 35, 121
ctiGetStatus, 36, 121
ctiGetStepSize, 37
ctiGetTireDependFiles, 37, 87
ctiGetTireDimensionData, 38, 121
ctiGetTireDimensionStringData, 39, 121
ctiGetTireHandle, 40, 121
ctiGetTireInstance, 40, 122
ctiGetTireKeyData, 41, 97, 122
ctiGetTireModelType, 42, 122
ctiGetTireProperties, 43, 97, 122
ctiGetTreadStates, 44, 97, 122
ctiGetTydexSignals, 45, 98, 122
CTIINIT, 4, 47, 91, 97, 98
ctilnit, 4, 46, 91, 97, 98, 123
ctiKillSolverOnEsc, 47, 125
ctilinearize, 48, 122
ctilinearizeWheelCarrier, 49, 122
ctiloadControlData, 51
ctiloadList, 52

ctiLoadRimData, 53, 123
ctiloadRimModel, 54, 125
ctiloadRoadData, 55, 123
ctiloadRoadModel, 55, 125
ctiLoadSoilModel, 56, 125
ctiloadSuspensionData, 57, 123
ctilLoadTireData, 58, 69, 123
ctiModifyFriction, 58, 122
CTINOTIFY, 74, 92
ctiOpenOutputFile, 58, 122

ctiOpenRoadGui, 59, 125

ctiOpenTireGui, 59, 125
ctiQuarterCar, 59, 97
ctiReadLTIMatrices, 64, 125
ctiReadOperatingConditions, 65, 97, 122
ctiReadStates, 65, 122
ctiReadStatesMemory, 66, 97, 125
ctiReadStatesMemoryList, 111
ctiRecorder, 67, 122

ctiReset, 67, 125
ctiSaveRecordedForcesMoments, 68, 122
ctiSetAffinity, 68, 122
ctiSetAmbientTemperature, 68, 122
ctiSetAnimationStepSize, 69, 122
ctiSetCompatVersion, 69, 70, 125
ctiSetContactBodyMotionData, 70, 122
ctiSetDesignParameter, 70, 122
ctiSetDiagMode, 71, 125
ctiSetDrumTorque, 71, 122
ctiSetInflationPressure, 72
ctiSetInitialRimAngle, 72, 122
ctiSetInitialTemperature, 72
ctiSetInitialTireTemperatures, 73, 122
ctiSetIntegerRoadParameter, 73, 122
ctiSetMultiThreadedCallFlag, 73, 122
ctiSetNotify, 74, 125

ctiSetOption, 75, 125
ctiSetOutputFilePrefix, 75, 122
ctiSetOutputStepSize, 75
ctiSetPrmHandle, 76
ctiSetRGRCanvasGeometry, 76
ctiSetRoadEvalPreference, 77, 125
ctiSetRoadMotionData, 77, 122
ctiSetRoadParameters, 77, 122
ctiSetRoadTemperature, 78, 123

ctiSetRunTimeMode, 78, 123

148

ctiSetStatesMemory, 79, 112, 125
ctiSetTimeConstantForces, 80, 123
ctiSetTirePPDataFileName, 80, 98, 125
ctiSetTireSide, 81, 123
ctiSetTreadDepth, 81, 123
ctiSetUPROXY, 82

ctiSetURGM, 83

ctiSetURIM, 82, 98, 125

ctiSetURM, 82, 98, 125

ctiSetUSM, 84, 98, 125
ctiSetVehicleStates, 84, 125
ctiSetWheelCenterRefPosition, 84, 123
ctiUpdateRoadData, 85, 125
ctiUpdateWheelEnvelope, 85, 123
ctiVerbose, 85, 123
ctiWriteAdditionalOutput, 86, 123
ctiWriteCustomizedTireData, 86
ctiWriteLTIMatrices, 87, 126
ctiWritePlotSignallabels, 88
ctiWriteRoadData, 88
ctiWriteStates, 89, 97, 123
ctiWriteStatesMemory, 89, 126
ctiWriteStatesMemoryList, 112, 126

ctiWriteWheelEnvelope, 90, 123

UMSGF, 4, 91, 92, 117, 134
UPROXY, 82, 92, 93

URIM, 82, 93

URM, 82, 94

UsM, 84, 95

149

	Inhaltsverzeichnis
	1 Overview on Interfaces to the FTire Tire Model Family
	1.1 Reference Platforms for the FTire Tire Model Family
	1.2 Interface Types

	2 Overview on CTI
	3 CTI API Documentation
	3.1 Tire handles
	3.2 Program Structure of CTI Applications
	3.3 API Function Reference
	3.3.1 ctiAdjustTwinTireWheelSpeed
	3.3.2 ctiAnimate
	3.3.3 ctiAnimateOnly
	3.3.4 ctiAnimateScene
	3.3.5 ctiCheckLicense
	3.3.6 ctiClose
	3.3.7 ctiCloseTire
	3.3.8 ctiComputeForces
	3.3.9 ctiComputeForcesOnCarBody
	3.3.10 ctiComputeForcesOnWheelCarrier
	3.3.11 ctiComputeForcesPosition
	3.3.12 ctiComputeForcesTimeContinuous
	3.3.13 ctiEnableTimeContinuous
	3.3.14 ctiEvaluateRoadCourse
	3.3.15 ctiEvaluateRoadHeight
	3.3.16 ctiFindOutputSignalNumber
	3.3.17 ctiGetArraySize
	3.3.18 ctiGetContactBodyForces
	3.3.19 ctiGetCosinSoftwareVersion
	3.3.20 ctiGetFileName
	3.3.21 ctiGetInstallationInfo
	3.3.22 ctiGetLTIMatrix
	3.3.23 ctiGetNodePositions
	3.3.24 ctiGetNodePositionsWithAttributes
	3.3.25 ctiGetNumberContinuousStates
	3.3.26 ctiGetOutputSignalLabel
	3.3.27 ctiGetOutputSignalNumber
	3.3.28 ctiGetOutputSignals
	3.3.29 ctiGetPlotSignal
	3.3.30 ctiGetPlotSignals
	3.3.31 ctiGetRimForces
	3.3.32 ctiGetRimProperties
	3.3.33 ctiGetRimRotationStates
	3.3.34 ctiGetRoadDependFiles
	3.3.35 ctiGetRoadForces
	3.3.36 ctiGetRoadParameters
	3.3.37 ctiGetRoadProperties
	3.3.38 ctiGetRoadSize
	3.3.39 ctiGetStatus
	3.3.40 ctiGetStepSize
	3.3.41 ctiGetTireDependFiles
	3.3.42 ctiGetTireDimensionData
	3.3.43 ctiGetTireDimensionStringData
	3.3.44 ctiGetTireHandle
	3.3.45 ctiGetTireInstance
	3.3.46 ctiGetTireKeyData
	3.3.47 ctiGetTireModelType
	3.3.48 ctiGetTireProperties
	3.3.49 ctiGetTreadStates
	3.3.50 ctiGetTydexSignals
	3.3.51 ctiInit
	3.3.52 ctiKillSolverOnEsc
	3.3.53 ctiLinearize
	3.3.54 ctiLinearizeWheelCarrier
	3.3.55 ctiLoadControlData
	3.3.56 ctiLoadList
	3.3.57 ctiLoadRimData
	3.3.58 ctiLoadRimModel
	3.3.59 ctiLoadRoadData
	3.3.60 ctiLoadRoadModel
	3.3.61 ctiLoadSoilModel
	3.3.62 ctiLoadSuspensionData
	3.3.63 ctiLoadTireData
	3.3.64 ctiModifyFriction
	3.3.65 ctiOpenOutputFile
	3.3.66 ctiOpenRoadGui
	3.3.67 ctiOpenTireGui
	3.3.68 ctiQuarterCar
	3.3.69 ctiReadLTIMatrices
	3.3.70 ctiReadOperatingConditions
	3.3.71 ctiReadStates
	3.3.72 ctiReadStatesMemory
	3.3.73 ctiRecorder
	3.3.74 ctiReset
	3.3.75 ctiSaveRecordedForcesMoments
	3.3.76 ctiSetAffinity
	3.3.77 ctiSetAmbientTemperature
	3.3.78 ctiSetAnimationStepSize
	3.3.79 ctiSetCompatVersion
	3.3.80 ctiSetContactBodyMotionData
	3.3.81 ctiSetDesignParameter
	3.3.82 ctiSetDiagMode
	3.3.83 ctiSetDrumTorque
	3.3.84 ctiSetInflationPressure
	3.3.85 ctiSetInitialRimAngle
	3.3.86 ctiSetInitialTemperature
	3.3.87 ctiSetInitialTireTemperatures
	3.3.88 ctiSetIntegerRoadParameter
	3.3.89 ctiSetMultiThreadedCallFlag
	3.3.90 ctiSetNotify
	3.3.91 ctiSetOption
	3.3.92 ctiSetOutputFilePrefix
	3.3.93 ctiSetOutputStepSize
	3.3.94 ctiSetPrmHandle
	3.3.95 ctiSetRGRCanvasGeometry
	3.3.96 ctiSetRoadEvalPreference
	3.3.97 ctiSetRoadMotionData
	3.3.98 ctiSetRoadParameters
	3.3.99 ctiSetRoadTemperature
	3.3.100 ctiSetRunTimeMode
	3.3.101 ctiSetStatesMemory
	3.3.102 ctiSetTimeConstantForces
	3.3.103 ctiSetTirePPDataFileName
	3.3.104 ctiSetTireSide
	3.3.105 ctiSetTreadDepth
	3.3.106 ctiSetUPROXY
	3.3.107 ctiSetURIM
	3.3.108 ctiSetURM
	3.3.109 ctiSetURGM
	3.3.110 ctiSetUSM
	3.3.111 ctiSetVehicleStates
	3.3.112 ctiSetWheelCenterRefPosition
	3.3.113 ctiUpdateRoadData
	3.3.114 ctiUpdateWheelEnvelope
	3.3.115 ctiVerbose
	3.3.116 ctiWriteAdditionalOutput
	3.3.117 ctiWriteCustomizedTireData
	3.3.118 ctiWriteLTIMatrices
	3.3.119 ctiWritePlotSignalLabels
	3.3.120 ctiWriteRoadData
	3.3.121 ctiWriteStates
	3.3.122 ctiWriteStatesMemory
	3.3.123 ctiWriteWheelEnvelope

	3.4 Client related API Function Reference
	3.4.1 ctiConnectToServer

	3.5 API Type Definition Reference
	3.5.1 typedef CTIINIT
	3.5.2 typedef CTINOTIFY
	3.5.3 typedef UMSGF
	3.5.4 typedef UPROXY
	3.5.5 typedef URIM
	3.5.6 typedef URM
	3.5.7 typedef USM

	3.6 Deprecated API Function Reference

	4 CTI Multi-Threading Extension (CTIMT)
	4.1 Program Structure of CTIMT Applications
	4.2 API Function Reference
	4.2.1 ctiComputeForcesList
	4.2.2 ctiComputeForcesListMT
	4.2.3 ctiComputeForcesMT
	4.2.4 ctiComputeForcesOnWCarrierList
	4.2.5 ctiComputeForcesOnWCarrierMT
	4.2.6 ctiComputeForcesWithOutputArrayList
	4.2.7 ctiGetForcesListMT
	4.2.8 ctiGetForcesMT
	4.2.9 ctiReadStatesMemoryList
	4.2.10 ctiWriteStatesMemoryList

	5 CTI Dynamic Library Wrapper
	5.1 API Function Reference
	5.1.1 ctidlClose
	5.1.2 ctidlGetCosinGuiPath
	5.1.3 ctidlGetCosinInstallFolder
	5.1.4 ctidlGetTireDataFileName
	5.1.5 ctidlInit
	5.1.6 ctidlOpenCosinGui
	5.1.7 ctidlOpenRoadGui
	5.1.8 ctidlOpenTireGui

	5.2 API Type Definition Reference
	5.2.1 typedef CTIDLINIT

	6 CTI/server Client Interface (CTICLI)
	6.1 Program Structure of CTICLI Applications
	6.2 CTI / CTICLI gateway
	6.3 CTICLI Function Coverage
	6.3.1 Client handles
	6.3.2 CTICLI functions with a corresponding CTI function and identical parameter list
	6.3.3 CTICLI functions with a corresponding CTI function and different parameter list
	6.3.4 CTICLI functions without a corresponding CTI function
	6.3.5 CTI functions without a corresponding CTICLI function

	6.4 API Function Reference
	6.4.1 cticliDownloadFile
	6.4.2 cticliGetServerStats
	6.4.3 cticliInit
	6.4.4 cticliListFiles
	6.4.5 cticliLoadCtiLibrary
	6.4.6 cticliLoadRimData
	6.4.7 cticliLoadRoadData
	6.4.8 cticliLoadSuspensionData
	6.4.9 cticliLoadTireData
	6.4.10 cticliUploadFile
	6.4.11 cticliGetForcesListMT
	6.4.12 cticliGetForcesWithOutputArrayListMT
	6.4.13 cticliGetLastExecTime

	6.5 API Type Definition Reference
	6.5.1 typedef CTICLICOMMTYPE
	6.5.2 typedef CTICLIINIT

	A Additional Tables
	A.1 Supported Labels for ctiFindOutputSignalNumber
	A.2 Subset of TYDEX Output Signals

	Index

