

New High Performance Stiff and Deformable Digital Roads for *FTire*

Gerald Hofmann and Michael Gipser @ cosin scientific software

HyperWorks Technology Conference 2010 Novi, MI, April 27-29, 2010

FTire: Higher frequency, short wavelength tire model	cosin scientific software		
Structural dynamics based, full 3D nonlinear in-plane and out-of-plane tire model for simulation of belt dynamics, local pressure distribution in the contact patch, rolling resistance, side-wall contact, large camber angles and misuse scenarios.			
Suitable for a frequency range up to 200Hz, excited by short surface wavelength, mass imbalance, non-uniformity or irregular tread patterns.			
Very fast and flexible. Orders of magnitude faster than explicit FE models.			
Simulation of imbalances by inhomogeneous mass distribution and	l local wear.		

- Belt temperature distribution model
- Available in the Altair HyperWorks Partner Alliance

Road Surface / Contact pressure / Road Loads

RGR road surface description

RGR	Roads:	Features
-----	--------	----------

- are evaluated with highest efficiency and accuracy
- no search for active triangles
- are available both in ASCII and binary format
- have lossless compression
- dynamic patch loading for virtually unlimited grid sizes
- minimum loading time
- > may have a curvilinear center line
- can export center line for driver models

Maximum Center Line Curvature

RGR Tools

cosin scientific software

- 2D visualization (single tracks)
- **3D visualization**, meshed or rendered
- generation of RGR roads out of any other supported road model
- generation of RGR roads out of 2D spectral density formula expression
- **)** generation of RGR roads out of z=f(x,y) formula expression
- generation of RGR roads out of image data
- processing of RGR roads:
 - smoothing
 - compression
 - ▶ coarsening
 - filtering
 - ASCII -> binary
 - Binary -> ASCII
 - splitting into patches

generation of shl-files for road graphics in calling solver

Road surface measurement

Courtesy of MAN Nutzfahrzeuge AG Research & Development (ERTV)

www.3D-Mapping.de

Measured Belgian Block Road (2)

Predicted Road Load On Belgian Block

Efficiency Comparison for Belgian Block Road File Formats

	Triangulated Road 3D TeimOrbit	RGR ASCII data file	RGR binary data file	RGR binary data file + curved center line
# nodes	1.487 mio	1.487 mio	1.487 mio	1.487 mio
# triangles	2.968 mio	-	-	-
file size	153.74 MB	12.88 MB	5.80 MB	6.02 MB
memory amount	237.80 MB	5.80 MB	5.80 MB	5.91 MB
file loading time	95.75 s	0.73 s	0.21 s	0.28 s

CPU Time for 1 Mio Road Evaluations

mean evaluation point distance	Triangulated Road 3D TeimOrbit	RGR ASCII data file	RGR binary data file	RGR binary data file + curved center line
0.001mm	0.826 s	0.203 s	0.203 s	0.556 s
0.01mm	0.984 s	0.203 s	0.203 s	0.556 s
0.1mm	2.98 s	0.203 s	0.203 s	0.556 s
1mm	23.2 s	0.203 s	0.203 s	0.556 s
10mm	222 s	0.203 s	0.203 s	0.556 s

CPU Time for Simulation on Belgian Block Road

tread blocks per segment	total number of tread blocks	road evaluations per s	total CPU time per s with RGR road	total CPU time per s with TRIA road
20	1600	4.15 mio	6.8 s	551 s
30	2400	5.80 mio	7.9 s	564 s
40	3200	7.45 mio	8.9 s	567 s
50	4000	9.11 mio	10.1 s	574 s
60	4800	10.76 mio	11.3 s	576 s

CRI/Tools

cosin scientific software

2D and 3D visualization

OOO CRI/tools (built Oct. 16, 2009)	
cosin scientific software	9 🗳 🗀 🙎 🔹 🛯 🖿 🖉	
Road data file		
/Users/micha/cosin/roads/patch3.rgr		
road model type kegular Grid (KGK) visualize	process	
20	export to RGR file	
30 rendered	reformat/process RGR file	
3D meshed	export to shell (SHL) file	
3D user-defined	export to WaveFront (OBJ) file	


```
cosin
User Soil Model Programming Interface (2)
                                                                                   scientific software
    void soil model interface (
                                    double
                                    double dx
                                   ,
                                     uint
                                                                  Sampling grid
                                     double
                                                                  parameters
                                     double
                                     uint
                                    double phi
                                     double* Fx
                                     double* Fv
                                                                  Applied forces (in)
                                     double* Fz
                                    double* z
                                     double* vx
                                                                  Road surface
                                     double* vv
                                                                  state (out)
                                    double* vz
                                    double* mu
                                              tire handle
                                     int
                                              calling_mode
                                     int
                                     double dt
                                     char*
                                              soil model data file
    {
      /* calling_mode = 0:
    initialize soil model instance
           calling mode = 1:
               call the soil model which applies the contact forces and updates its
              state variables according to time-step dt; compute and return new
grid elevations and velocities for soil-model instance
           calling_mode = 99:
               terminate model instance
                                                                                           */
```

cosin scientific software Simulation With Internal Soft Soil Model displacement scaling = 0.00 contour plot resolution = 1.00 force scaling = 1.00 0.00 0.00 0.00 10.00 10.00 3.00 ground pressure [MPa] >0.80 0.70 . 0.80 0.60 . 0.70 0.50 0.60 0.40 \ 0.50 0:30 . 0:40 0:20 . 0:30 0.10 . 0.20 < 0.10 t= 0.0006s grid-line dist. 20 mm 8= 0.01m

CRI/Tools: RGR File Generation (1)

CRI/Tools: RGR File Generation (3)

cosin CRI/Tools: RGR File Generation (4) scientific software waviness $p_3 = 2.0$ waviness $p_3 = 2.5$ waviness $p_3 = 3.0$ x/y anisotropy factor $p_2 = 3.0$

CRI/Tools: RGR File Generation (5)

CRI/Tools: RGR File Generation (6)

cosin scientific software

...thank you for your attention!

